Hello...i want to find the empirical rate for type 1 error using fixed trimmed mean. To make it easy, i'm referring to journal given by this website http://www.academicjournals.org/ajmcsr/PDF/pdf2011/Yusof%20et%20al.pdf. I already run the programme and there is no error in it but i got zero for the empirical rate of type 1 error. The empirical rate for the type 1 error given in the journal should lied between 0.025 and 0.07. Below is my programme. Hope anyone can help me. Thank you. ## use for data transformation g=0 h=0 w<-a*exp(h*a^2/2) x<-b*exp(h*b^2/2) y<-c*exp(h*c^2/2) z<-d*exp(h*d^2/2) g=0.5 and h=0 g=0.5 and h=0.5 w<-(exp(g*a)-1)/g*(exp((h*a^2)/2)) x<-(exp(g*b)-1)/g*(exp((h*b^2)/2)) y<-(exp(g*c)-1)/g*(exp((h*c^2)/2)) z<-(exp(g*d)-1)/g*(exp((h*d^2)/2)) ######################## FIXED SYMMETRIC TRIMMED MEAN ############################### asim<-5000 pv<-rep(NA, asim) for(j in 1:asim) { print(j) set.seed(j) n1=15 n2=15 n3=15 n4=15 miu=0 sd1=1 sd2=1 sd3=1 sd4=1 a=rnorm(n1,miu,sd1) b=rnorm(n2,miu,sd2) c=rnorm(n3,miu,sd3) d=rnorm(n4,miu,sd4) ## data transformation g=0 h=0 w<-a*exp(h*a^2/2) x<-b*exp(h*b^2/2) y<-c*exp(h*c^2/2) z<-d*exp(h*d^2/2) mat1<-sort(w) mat2<-sort(x) mat3<-sort(y) mat4<-sort(z) alpha=0.15 k1=floor(alpha*n1)+1 k2=floor(alpha*n2)+1 k3=floor(alpha*n3)+1 k4=floor(alpha*n4)+1 r1=k1-(alpha*n1) r2=k2-(alpha*n2) r3=k3-(alpha*n3) r4=k4-(alpha*n4) ## j-group trimmed mean e1=k1+1 f1=n1-k1 e2=k2+1 f2=n2-k2 e3=k3+1 f3=n3-k3 e4=k4+1 f4=n4-k4 trim1=1/((1-2*alpha)*n1)*(sum(mat1[e1:f1]) + r1*(mat1[k1]+mat1[n1-k1+1])) trim2=1/((1-2*alpha)*n2)*(sum(mat2[e2:f2]) + r2*(mat2[k2]+mat2[n2-k2+1])) trim3=1/((1-2*alpha)*n3)*(sum(mat3[e3:f3]) + r3*(mat3[k3]+mat3[n3-k3+1])) trim4=1/((1-2*alpha)*n4)*(sum(mat4[e4:f4]) + r4*(mat4[k4]+mat4[n4-k4+1])) ## sample winsorized mean x1=(1-r1)*mat1[k1+1]+r1*mat1[k1] x2=(1-r2)*mat2[k2+1]+r2*mat2[k2] x3=(1-r3)*mat3[k3+1]+r3*mat3[k3] x4=(1-r4)*mat4[k4+1]+r4*mat4[k4] u1=(1-r1)*mat1[n1-k1]+r1*mat1[n1-k1+1] u2=(1-r2)*mat2[n2-k2]+r2*mat2[n2-k2+1] u3=(1-r3)*mat3[n3-k3]+r3*mat3[n3-k3+1] u4=(1-r4)*mat4[n4-k4]+r4*mat4[n4-k4+1] win1=1/n1* (sum(mat1[e1:f1])+k1*(x1+u1)) win2=1/n2* (sum(mat2[e2:f2])+k2*(x2+u2)) win3=1/n3* (sum(mat3[e3:f3])+k3*(x3+u3)) win4=1/n4* (sum(mat4[e4:f4])+k4*(x4+u4)) ## g-winsorized sum of squared deviations ssd1=sum((mat1[e1:f1]-win1)^2) + k1*((mat1[k1+1]-win1)^2 + (mat1[n1-k1]-win1)^2) ssd2=sum((mat2[e2:f2]-win2)^2) + k2*((mat2[k2+1]-win2)^2 + (mat2[n2-k2]-win2)^2) ssd3=sum((mat3[e3:f3]-win3)^2) + k3*((mat3[k3+1]-win3)^2 + (mat3[n3-k3]-win3)^2) ssd4=sum((mat4[e4:f4]-win4)^2) + k4*((mat4[k4+1]-win4)^2 + (mat4[n4-k4]-win4)^2) ## calculate f statistic J=4 h1=n1-2*floor(alpha*n1) h2=n2-2*floor(alpha*n2) h3=n3-2*floor(alpha*n3) h4=n4-2*floor(alpha*n4) H=h1+h2+h3+h4 xt=(h1*trim1+h2*trim2+h3*trim3+h4*trim4)/H num= ((trim1-xt)^2+(trim2-xt)^2+(trim3-xt)^2+(trim4-xt)^2)/(J-1) denom= (ssd1+ssd2+ssd3+ssd4)/(H-J) ft=num/denom pv[j]=1-pf(ft,(J-1),(H-J)) } mean(pv<0.05) ################################################################################## Graduate student of Universiti Putra Malaysia -- View this message in context: http://r.789695.n4.nabble.com/fixed-trimmed-mean-for-j-group-tp4633327.html Sent from the R help mailing list archive at Nabble.com.