Hi all, My name is Amy, I am a masters student in Bioinformatics at North Carolina State University. I am working on a project and I am trying to use the lumi R package for microarray data analysis. I have shown the sample code here and have questions about modifying the sample code for my own data. lumi package in R, example.lumi, the sample data has 8000 features and 4 samples I have highlighted the code I have questions on in red, my data has 4 different types of samples, each repeated 6 times, so a total of 24 samples and about 48,000 rows. how should I identify my sampleType in my case? also what does colnames(design) <- c('100:0', '95:5-100:0') do, which columns exactly does it take into consideration? Thanks! so the sample code i'm trying to follow is below: ################################################### ### code chunk number 30: filtering ################################################### presentCount <- detectionCall(example.lumi) selDataMatrix <- dataMatrix[presentCount > 0,] probeList <- rownames(selDataMatrix) ################################################### ### code chunk number 31: Identify differentially expressed genes ################################################### ## Specify the sample type sampleType <- c('100:0', '95:5', '100:0', '95:5') if (require(limma)) { ## compare '95:5' and '100:0' design <- model.matrix(~ factor(sampleType)) colnames(design) <- c('100:0', '95:5-100:0') fit <- lmFit(selDataMatrix, design) fit <- eBayes(fit) ## Add gene symbols to gene properties if (require(lumiHumanAll.db) & require(annotate)) { geneSymbol <- getSYMBOL(probeList, 'lumiHumanAll.db') geneName <- sapply(lookUp(probeList, 'lumiHumanAll.db', 'GENENAME'), function(x) x[1]) fit$genes <- data.frame(ID= probeList, geneSymbol=geneSymbol, geneName=geneName, stringsAsFactors=FALSE) } ## print the top 10 genes print(topTable(fit, coef='95:5-100:0', adjust='fdr', number=10)) ## get significant gene list with FDR adjusted p.values less than 0.01 p.adj <- p.adjust(fit$p.value[,2]) sigGene.adj <- probeList[ p.adj < 0.01] ## without FDR adjustment sigGene <- probeList[ fit$p.value[,2] < 0.01] } [[alternative HTML version deleted]]