Hy, I try to give an example of overfitting with multi-layer perceptron. I have done following small example : library(nnet) set.seed(1) x <- matrix(rnorm(20),10,2) z <- matrix(rnorm(10),10,1) rx <- max(x)-min(x) rz <- max(z)-min(z) x <- x/rx z <- z/rz erreur <- 10^9 for(i in 1:100){ temp.mod <- nnet(x=x,y=z,size=10,rang=1,maxit=1000) if(temp.mod$value<erreur){ res.mod <- temp.mod erreur <- res.mod$value } } cat("\nFinal error : ",res.mod$value,"\n") Normaly it is easy task for an MLP with 10 hidden units to reduce the final error to almost 0 (althougt there is nothing to predict). But the smallest error that I get is : 0.753895 (very poor result) Maybe this problem is already known?? Maybe the fault is mine but I don't see where. Joseph Rynkiewicz -- Ce message a ete verifie par MailScanner pour des virus ou des polluriels et rien de suspect n'a ete trouve.