hi, I wrote a set of R functions for estimating what is the probability function that best fits a set of data. I wrote them based in this response: /http://tolstoy.newcastle.edu.au/R/help/03b/1714.html/ I extracted the relevant segment of the link above: //> PPCC <- function(shape, scale, x) { # only for weibull / + x <- sort(x) + pp <- ppoints(x) + cor( qweibull(pp, shape=shape, scale=scale), x)} / I clearly read, "/only for weibull"/ however I wrote similar functions for /normal, exponential, poisson, and lognormal. / Could someone says me if these functions are correct? Are there other ways to estimate the correlation coefficient? /PPCCNORM <- function(x,mean,sd) { x <- sort(x) pp <- ppoints(x) cor(qnorm(pp,mean=mean,sd=sd),x) } PPCCLOG <- function(x,mean,sd) { x <- sort(x) pp <- ppoints(x) cor(qlnorm(pp,meanlog=mean,sdlog=sd),x) } PPCCPOIS <- function(x,lambda) { x <- sort(x) pp <- ppoints(x) cor(qpois(pp,lambda=lambda),x) } PPCCEXP <- function(x,rate) { x <- sort(x) pp <- ppoints(x) cor(qexp(pp,rate=rate),x) }/ Thanks in advanced, [[alternative HTML version deleted]]