Hello,
I did a cross-validation using cvlm from DAAG package but wasn't sure how to
assess the result. Does this result means my model is a good model?
I understand that the overall ms is the mean of sum of squares. But is 0.0987 a
good number? The response (i.e. gailRel5yr) has min,1st Quantile, median, mean
and 3rd Quantile, and max as follows: (0.462, 0.628, 0.806, 0.896, 1.000, 2.400)
?
The plot generated by cvlm, the point does not look too tight. Thanks in advance
> CVlm(gailRel5yr~risk.sum,m=10)
Analysis of Variance Table
Response: gailRel5yr
? ? ? ? ? Df Sum Sq Mean Sq F value Pr(>F) ? ?
risk.sum ? 1 ? 4.19 ? ?4.19 ? ?44.8 ?2e-09 ***
Residuals 88 ? 8.24 ? ?0.09 ? ? ? ? ? ? ? ? ??
---
Signif. codes: ?0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1?
fold 1?
Observations in test set: 9?
? ? ? ? ? ? ? ? ? 3 ? ? ?7 ? ? ? 17 ? ? 27 ? ? 46 ? ? 66 ? ? 67 ? ?83 ? ? 89
risk.sum ? ?27.2345 66.447 29.20988 33.806 28.861 20.293 29.210 1.883 12.482
cvpred ? ? ? 0.9693 ?1.607 ?1.00148 ?1.076 ?0.996 ?0.856 ?1.001 0.557 ?0.729
gailRel5yr ? 1.0000 ?1.333 ?1.00000 ?0.778 ?0.667 ?1.000 ?0.750 0.727 ?1.000
CV residual ?0.0307 -0.274 -0.00148 -0.298 -0.329 ?0.144 -0.251 0.170 ?0.271
Sum of squares = 0.46 ? ?Mean square = 0.05 ? ?n = 9?
fold 2?
Observations in test set: 9?
? ? ? ? ? ? ? ? ?5 ? ? 41 ? ? 42 ? ? 49 ? ? 51 ? ? 64 ? ?69 ? ? ?81 ? ? ?84
risk.sum ? ?28.529 24.779 28.529 16.194 47.222 ?8.383 5.813 ?1.8832 16.1937
cvpred ? ? ? 0.975 ?0.922 ?0.975 ?0.800 ?1.241 ?0.688 0.652 ?0.5958 ?0.7996
gailRel5yr ? 0.625 ?0.533 ?1.143 ?0.636 ?1.833 ?0.462 1.000 ?0.5385 ?0.7143
CV residual -0.350 -0.389 ?0.168 -0.163 ?0.592 -0.227 0.348 -0.0573 -0.0853
Sum of squares = 0.86 ? ?Mean square = 0.1 ? ?n = 9?
fold 3?
Observations in test set: 9?
? ? ? ? ? ? ? ? ?2 ? ? ? 8 ? ? 12 ? ? 25 ? ? 30 ? ? 47 ? ? 56 ? ? 74 ? ? 82
risk.sum ? ?24.043 12.5825 10.969 16.803 29.017 49.341 15.455 28.256 21.906
cvpred ? ? ? 0.925 ?0.7651 ?0.743 ?0.824 ?0.995 ?1.279 ?0.805 ?0.984 ?0.896
gailRel5yr ? 0.545 ?0.6923 ?0.571 ?0.500 ?0.714 ?1.857 ?0.714 ?0.667 ?0.500
CV residual -0.380 -0.0728 -0.171 -0.324 -0.281 ?0.578 -0.091 -0.318 -0.396
Sum of squares = 0.96 ? ?Mean square = 0.11 ? ?n = 9?
fold 4?
Observations in test set: 9?
? ? ? ? ? ? ? ? 16 ? ?22 ? 26 ? ? 44 ? ? 50 ? ? ?61 ? ? ?71 ? ? 72 ? ? 79
risk.sum ? ?32.960 44.11 17.1 32.628 16.194 ?5.9823 ?5.9823 21.955 21.168
cvpred ? ? ? 1.030 ?1.19 ?0.8 ?1.025 ?0.786 ?0.6379 ?0.6379 ?0.870 ?0.858
gailRel5yr ? 1.667 ?1.57 ?1.0 ?0.500 ?1.000 ?0.6000 ?0.6000 ?0.625 ?1.143
CV residual ?0.637 ?0.38 ?0.2 -0.525 ?0.214 -0.0379 -0.0379 -0.245 ?0.284
Sum of squares = 1.06 ? ?Mean square = 0.12 ? ?n = 9?
fold 5?
Observations in test set: 9?
? ? ? ? ? ? ? ? 13 ? ? ?15 ? ? ?37 ? ?40 ? ? 48 ? ? 59 ? ? 62 ? ? 76 ? ?78
risk.sum ? ?5.8134 28.5287 28.5287 5.982 29.766 45.754 10.468 28.878 1.883
cvpred ? ? ?0.6144 ?0.9569 ?0.9569 0.617 ?0.976 ?1.217 ?0.685 ?0.962 0.555
gailRel5yr ?0.6667 ?1.0000 ?1.0000 1.000 ?0.875 ?1.833 ?0.933 ?1.214 0.909
CV residual 0.0523 ?0.0431 ?0.0431 0.383 -0.101 ?0.617 ?0.249 ?0.252 0.354
Sum of squares = 0.79 ? ?Mean square = 0.09 ? ?n = 9?
fold 6?
Observations in test set: 9?
? ? ? ? ? ? ? ? 19 ? ? 32 ? ? 33 ? ? 55 ? ? 57 ? ?68 ? ?80 ? ?86 ? ? 88
risk.sum ? ?14.719 28.529 24.043 10.468 20.293 12.48 1.883 5.813 ?5.982
cvpred ? ? ? 0.764 ?0.980 ?0.910 ?0.698 ?0.852 ?0.73 0.564 0.625 ?0.628
gailRel5yr ? 1.000 ?0.667 ?0.667 ?0.538 ?0.667 ?1.00 0.778 1.000 ?0.500
CV residual ?0.236 -0.314 -0.243 -0.160 -0.185 ?0.27 0.214 0.375 -0.128
Sum of squares = 0.55 ? ?Mean square = 0.06 ? ?n = 9?
fold 7?
Observations in test set: 9?
? ? ? ? ? ? ? ? ?20 ? ? 24 ? ?36 ? ? ?45 ? ? 52 ? ? 63 ? ? 65 ? ? 87 ? ?90
risk.sum ? ?35.3605 10.620 26.44 ?5.9823 29.766 31.074 16.194 20.293 1.883
cvpred ? ? ? 1.0896 ?0.702 ?0.95 ?0.6289 ?1.002 ?1.022 ?0.789 ?0.853 0.565
gailRel5yr ? 1.0000 ?1.000 ?0.50 ?0.6000 ?1.143 ?0.714 ?0.600 ?1.000 0.933
CV residual -0.0896 ?0.298 -0.45 -0.0289 ?0.141 -0.308 -0.189 ?0.147 0.369
Sum of squares = 0.61 ? ?Mean square = 0.07 ? ?n = 9?
fold 8?
Observations in test set: 9?
? ? ? ? ? ? ? ? 18 ? ? 21 ? ? 23 ? ? 28 ? ? 38 ? ?70 ? ?73 ? ?75 ? ? 77
risk.sum ? ?25.656 26.239 49.353 16.682 9.7323 6.870 1.883 1.883 20.293
cvpred ? ? ? 0.943 ?0.953 ?1.337 ?0.794 0.6782 0.631 0.548 0.548 ?0.854
gailRel5yr ? 0.700 ?0.929 ?0.667 ?1.000 0.7500 0.944 0.667 0.778 ?0.462
CV residual -0.243 -0.024 -0.670 ?0.206 0.0718 0.314 0.119 0.230 -0.392
Sum of squares = 0.88 ? ?Mean square = 0.1 ? ?n = 9?
fold 9?
Observations in test set: 9?
? ? ? ? ? ? ? ? ?6 ? ? ?9 ? ? ? 34 ? ? 35 ? ? ?39 ? ? 43 ? ? ?54 ? ? 60 ? ? 85
risk.sum ? ?46.480 29.030 16.19369 40.364 14.7192 17.826 17.8264 26.588 16.194
cvpred ? ? ? 1.241 ?0.985 ?0.79725 ?1.151 ?0.7757 ?0.821 ?0.8212 ?0.950 ?0.797
gailRel5yr ? 1.667 ?0.846 ?0.80000 ?1.000 ?0.8125 ?1.083 ?0.8333 ?0.556 ?0.533
CV residual ?0.426 -0.139 ?0.00275 -0.151 ?0.0368 ?0.262 ?0.0122 -0.394 -0.264
Sum of squares = 0.52 ? ?Mean square = 0.06 ? ?n = 9?
fold 10?
Observations in test set: 9?
? ? ? ? ? ? ? ? ?1 ? ? ?4 ? ?10 ? ? 11 ? ? 14 ? ? 29 ? ? 31 ? ? 53 ? ?58
risk.sum ? ?37.400 50.409 47.61 47.433 56.210 23.484 29.030 28.529 54.90
cvpred ? ? ? 1.065 ?1.224 ?1.19 ?1.188 ?1.296 ?0.894 ?0.962 ?0.956 ?1.28
gailRel5yr ? 0.909 ?1.667 ?0.90 ?1.650 ?1.444 ?0.600 ?0.545 ?0.571 ?2.40
CV residual -0.156 ?0.442 -0.29 ?0.462 ?0.149 -0.294 -0.416 -0.384 ?1.12
Sum of squares = 2.2 ? ?Mean square = 0.24 ? ?n = 9?
Overall (Sum over all 9 folds)?
? ? ms?
0.0987