Greetings to you all, I am performing a semi parametric bootstrap in R on a Gamma Distributed data and a Binomial distributed data. The main challenge am facing is the fact that the residual variance depends on the mean (if I am correct). I strongly feel that the script below may be wrong due to mean-variance relationship #####R code####### fit1s <-glm(mydata$vzv~mydata$age.c+mydata$age2+mydata$sex1, family=Gamma(link=log)) x.betahat1<-fit1s$fitted.values res1<-fit1s$residuals b<-1000 for (i in 1:b){ b.i <- sample(index, size=n, replace=T) res.star1=res1[b.i] bst1=x.betahat1+res.star1 mydata1 <-data.frame(age,age2,sex,bst1) ########Modeling ################ fit11 <-glm(bst1~age+age2+sex, family=Gamma(link=log),data=mydata1) } Can someone help me correct this code? Kindly advice on Binomial data as well Happy New year2013! -- _______________________________ Paul K. Musingila
Greetings to you all, I am performing a semi parametric bootstrap in R on a Gamma Distributed data and a Binomial distributed data. The main challenge am facing is the fact that the residual variance depends on the mean (if I am correct). I strongly feel that the script below may be wrong due to mean-variance relationship #####R code####### fit1s <-glm(mydata$vzv~mydata$age.c+mydata$age2+mydata$sex1, family=Gamma(link=log)) x.betahat1<-fit1s$fitted.values res1<-fit1s$residuals b<-1000 for (i in 1:b){ b.i <- sample(index, size=n, replace=T) res.star1=res1[b.i] bst1=x.betahat1+res.star1 mydata1 <-data.frame(age,age2,sex,bst1) ########Modeling ################ fit11 <-glm(bst1~age+age2+sex, family=Gamma(link=log),data=mydata1) } Can someone help me correct this code? Kindly advice on Binomial data as well Happy New year2013! -- _______________________________ Paul K. Musingila