iembry
2012-Nov-18 20:24 UTC
[R] subtract multiple columns from single column for Nash Sutcliffe efficiency
Hi everyone, I am having trouble using my own data in the Nash-Sutcliffe efficiency (NSE) function. In R, this is what I have done: Vobsr <- read.csv("Observed_Flow.csv", header = TRUE, sep =",") # see data below Vsimr <- read.csv("1000Samples_Vsim.csv", header = TRUE, sep =",") # see data below Vobsr <- as.matrix(Vobsr[,-1]) # remove column 1 from analysis thus Vobsr is 101x1 double matrix (column 1 is date information) Vsimr <- as.matrix(Vsimr[,-1]) # remove column 1 from analysis thus Vsimr is 101x1000 double matrix (column 1 is date information) How can I subtract each row in "Vsimr" from each row in "Vobsr" (Vobsr - Vsimr)? That is the problem that I am having that keeps me from using the following code below for NSE (Nash-Sutcliffe efficiency): NSE(Vobsr,Vsimr) NSE = 1 - (sum((obs - sim)^2)/(sum(obs - mean(obs))^2)) # obs is Vobsr and sim is Vsimr I would like to thank each of you in advance for your assistance. I am including some of the data from the files that I am operating on: 1 column of Observed_Flow.csv 81.071 73.187 66.991 62.482 59.662 58.529 59.085 61.328 65.259 70.878 78.184 87.179 97.862 110.23 124.29 140.08 157.57 176.76 197.63 220.18 244.4 270.31 297.88 327.14 358.09 390.71 425.03 461.03 498.72 538.09 579.16 621.91 666.35 712.48 760.29 809.8 860.99 913.87 968.44 1024.7 1082.6 1142.3 1203.6 1266.6 1331.3 1397.7 1465.7 1535.5 1606.9 1680.1 1754.9 1831.4 1907.1 1981.9 2055.9 2129 2201.3 2272.7 2343.3 2413.1 2482 2550.1 2617.3 2683.7 2749.2 2813.9 2877.8 2940.8 3003 3064.3 3124.8 3184.4 3243.2 3301.1 3358.2 3414.5 3469.9 3524.4 3578.2 3631 3683.1 3734.3 3784.6 3834.1 3882.8 3930.6 3977.6 4023.7 4069 4113.4 4157 4199.8 4241.7 4282.7 4323 4362.3 4400.9 4438.6 4475.4 4511.4 4546.6 2 columns of 1000 columns of 1000Samples_Vsim.csv 81.07 81.07 73.19 73.19 65.81 67.16 58.93 63 52.55 60.7 46.68 60.25 41.31 61.67 36.44 64.95 32.08 70.08 28.22 77.08 24.86 85.94 22.01 96.65 19.65 109.23 17.8 123.67 16.46 139.96 15.61 158.12 15.27 178.14 15.43 200.02 16.1 223.75 17.27 249.35 18.94 276.81 21.11 306.13 23.79 337.31 26.97 370.34 30.65 405.24 34.84 442 39.52 480.62 44.71 521.1 50.41 563.44 56.61 607.64 63.31 653.7 70.51 701.62 78.21 751.4 86.42 803.04 95.13 856.53 104.35 911.89 114.06 969.11 124.28 1028.2 135.01 1089.1 146.23 1151.9 157.96 1216.6 170.19 1283.1 182.93 1351.5 196.16 1421.7 209.9 1493.8 224.15 1567.8 238.89 1643.6 254.14 1721.3 269.89 1800.8 286.15 1882.2 302.91 1965.5 320.17 2050.6 337.18 2134.8 353.93 2218.1 370.44 2300.4 386.69 2381.8 402.7 2462.3 418.45 2541.8 433.95 2620.4 449.2 2698.1 464.2 2774.9 478.94 2850.7 493.44 2925.6 507.68 2999.5 521.67 3072.6 535.41 3144.7 548.9 3215.8 562.14 3286.1 575.12 3355.4 587.86 3423.8 600.34 3491.2 612.57 3557.7 624.55 3623.3 636.28 3688 647.76 3751.7 658.98 3814.5 669.96 3876.4 680.68 3937.3 691.15 3997.3 701.37 4056.4 711.34 4114.6 721.06 4171.8 730.52 4228.1 739.74 4283.4 748.7 4337.9 757.41 4391.4 765.87 4443.9 774.08 4495.6 782.04 4546.3 789.74 4596.1 797.2 4644.9 804.4 4692.8 811.35 4739.8 818.05 4785.9 824.5 4831 830.7 4875.2 836.64 4918.5 842.33 4960.8 847.78 5002.2 852.97 5042.7 857.91 5082.3 -- View this message in context: http://r.789695.n4.nabble.com/subtract-multiple-columns-from-single-column-for-Nash-Sutcliffe-efficiency-tp4649966.html Sent from the R help mailing list archive at Nabble.com.