On 18.10.2011 11:03, arunkumar1111 wrote:> Hi
>
> I'm performing a PLS
>
> This is my data present in a file
>
> Year Y X2 X3 X4 X5 X6
> 1960 27.8 397.5 42.2 50.7 78.3 65.8
> 1960 29.9 413.3 38.1 52 79.2 66.9
> 1961 29.8 439.2 40.3 54 79.2 67.8
> 1961 30.8 459.7 39.5 55.3 79.2 69.6
> 1962 31.2 492.9 37.3 54.7 77.4 68.7
>
> My R-code
> Data<- read.csv("C:/TestData.csv")
> variable=names(Data)[4:8]
There are only 7 columns in your data.
> dataset=NULL
> dataset$X=NULL
Why NULL?
> len=length(variable)
> for( i in 1:len)
Better: for(i in seq_along(variable))
> {
> var=variable[i]
> if(i==1)
> {
> dataset$X=as.matrix(Data[var])
> }
> if(i>1)
> {
> dataset$X=as.matrix(cbind(dataset$X,Data[var]))
> }
> }
Or even better, forget about that loop!
X <- as.matrix(Data[,4:8])
seems to be the fast way without any loop - but again, there is no 8th
column in your data.
> depVar="Y"
> dataset$Y=as.matrix(cbind(Data[depVar]))
What's wrong with
dataset$Y <- Data[,depVar]
> pls1=mvr(Y~X,data=dataset,ncomp=4)
Looks like you are talking about the pls package (unstated!)?
Then, just forget everything from before and just read in the data and
apply:
fit1 <- mvr(Y ~ X2 + X3 + X4 + X5 + X6, data=Data, ncomp=4)
you do not need all that preprocessing!
> summary(pls1)
I get:
ummary(mvr(Y ~ X2 + X3 + X4 + X5 + X6, data=Data, ncomp=4))
Data: X dimension: 5 5
Y dimension: 5 1
Fit method: kernelpls
Number of components considered: 4
TRAINING: % variance explained
1 comps 2 comps 3 comps 4 comps
X 99.73 99.85 100.00 100
Y 78.51 99.81 99.98 100
Uwe Ligges
> On execution the error is
>
> Error in get(as.character(FUN), mode = "function", envir = envir)
:
> object 'X6' of mode 'function' was not found
>
> Please help me on this
>
>
> --
> View this message in context:
http://r.789695.n4.nabble.com/problem-in-exceuting-PLS-tp3914664p3914664.html
> Sent from the R help mailing list archive at Nabble.com.
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.