Felix Nensa
2011-Apr-11 20:29 UTC
[R] Non linear Regression: "singular gradient matrix at initial parameter estimates"
Hi, I am using nls to fit a non linear function to some data but R keeps giving me "singular gradient matrix at initial parameter estimates" errors. For testing purposes I am doing this: ### R code ### x <- 0:140 y <- 200 / (1 + exp(17 - x)/2) * exp(-0.02*x) # creating 'perfect' samples with fitting model yeps <- y + rnorm(length(y), sd = 2) # adding noise # results in above error fit = nls(yeps ~ p1 / (1 + exp(p2 - x) / p3) * exp(p4 * x)) ###>From what I've found in this list I think that my model is over-parameterized.How can I work around that? Thanks, Felix [[alternative HTML version deleted]]
Peter Ehlers
2011-Apr-12 09:10 UTC
[R] Non linear Regression: "singular gradient matrix at initial parameter estimates"
On 2011-04-11 13:29, Felix Nensa wrote:> Hi, > > I am using nls to fit a non linear function to some data but R keeps giving > me "singular gradient matrix at initial parameter estimates" errors. > For testing purposes I am doing this: > > ### R code ### > > x<- 0:140 > y<- 200 / (1 + exp(17 - x)/2) * exp(-0.02*x) # creating 'perfect' samples > with fitting model > yeps<- y + rnorm(length(y), sd = 2) # adding noise > > # results in above error > fit = nls(yeps ~ p1 / (1 + exp(p2 - x) / p3) * exp(p4 * x)) > > ### > >> From what I've found in this list I think that my model is over-parameterized. > How can I work around that?Take out p3; it's redundant. Peter Ehlers> Thanks, > > Felix > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help at r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code.