Dear All, I fear I am badly misunderstanding something fundamental about the mclust package. Please considered the dataset pasted at the end of the email (you can also have a look at http://dl.dropbox.com/u/5685598/dataedges.csv ). Now, I would like to use the info on columns 1,2 and 4 to predict the value in column 3. However, when I run the script below (obg_mining_script.R), I get errors and plenty of warnings. source('obg_mining_script.R') EEV EEI EEI EEE EEE EII EII EII EII EII EII EII E 3 4 3 3 2 8 5 8 2 9 2 9 2 [1] "OK training" Error in cdensE(data = data, logarithm = TRUE, parameters = parameters, : data must be one-dimensional In addition: There were 42 warnings (use warnings() to see them) Can anyone tell me what I am doing wrong? Many thanks Lorenzo ############################ library(mclust) rm(list=ls()) #Define the training dataset sel_col <- c(1,2,4) sample_percentage <- 0.9 my_data <- read.csv("http://dl.dropbox.com/u/5685598/dataedges.csv", header=FALSE) my_data <- as.matrix(my_data) set.seed(1234) ms <- sample(seq(sample_percentage*dim(my_data)[1])) train_set <- my_data[ms, sel_col] my_labels <- my_data[ms,-sel_col] train <- mclustDAtrain(train_set, labels = my_labels) ## training step summary(train) print("OK training") test_set <- my_data[-ms, sel_col] test <- mclustDAtest(test_set, train) ## compute model densities clTest <- summary(test)$class ## classify training set err_est <- classError(clTest,my_data[-ms,-sel_col])