Maximilian Kofler
2010-May-06 09:40 UTC
[R] Problem with nested functions - functions nested too deeply in source code
Hi all! I¹m just implementing the Ullmann¹s algorithm for searching subgraph isomorphisms in graphNEL objects. The algorithm is running with smaller graphs, but when I¹m calling it i get an R error message saying that functions are nested too deeply in source code. I found out that the problem is in the so called refinement procedure of the algorithm which consists of 10 different functions, returning an adjacency matrix. I¹m calling the refinement procedure with M <- refine1(M, A, B, p_A, p_B, FAIL) (note that all parameters in call refine1 have been defined previosly) Then the following steps look like this ##################################### # Refinement process # ##################################### refine1 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ #print("refine 1") # elim marks if there was eliminated a 1 (and changed to 0) lst <- vector(mode = "numeric") elim <- 0 i <- 1 refine2(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) } refine2 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ #print("refine 2") k <- 1 h <- 1 sc <- vector(mode = "numeric", length = p_A) for (l in 1:p_A){ sc[l] <- 0 } sc[1] <- 1 refine3(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) } refine3 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ #print("refine 3") # check if there is a 1 in the current row in adjacency matrix of graph1 which is on the same position of the 1 in sc # sc is a binary string whith only one 1. The position of the one goes from the first position of sc to the last position # and is used for scanning. First this is done for graph 1, and than for graph 2. Then it is checked if the following condition # is fulfilled: (for all x) ((A[i,x] = 1) => (there exists one ore more y) (M[x,y] * B[x,j] = 1)). The algorithm terminates if no more # 1 can be changed in a 0 if (1 %in% collation(A[i,], sc) == FALSE){ refine4(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) } else { lst[k] <- h k <- k+1 refine4(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) } } refine4 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ #print("refine 4") sc <- c(0,sc[-p_A]) h <- h+1 if (k != (rowSums(A)[i])+1){ refine3(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) } else { refine5(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) } } refine5 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ #print("refine 5") j <- 1 sc <- vector(mode = "numeric", length = p_B) for (l in 1:p_B){ sc[l] <- 0 } sc[1] <- 1 refine6(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) } refine6 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ #print("refine 6") if (1 %in% collation(M[i,], sc) == FALSE){ refine9(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) } else { h <- 1 refine7(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) } } refine7 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ #print("refine 7") x <- lst[h] if (1 %in% collation(M[x,], B[,j]) == FALSE){ refine8(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) } else { h <- h+1 if (h != (rowSums(A)[i])+1){ refine7(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) } else { refine9(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) } } } refine8 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ #print("refine 8") not_sc <- vector(mode = "numeric", length = p_B) for (n in 1:p_B){ if (sc[n] == 1){ not_sc[n] <- 0 } else { not_sc[n] <- 1 } } M[i,] <- collation(M[i,], not_sc) elim <- elim+1 h <- h+1 refine9(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) } refine9 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ #print("refine 9") sc <- c(0,sc[-p_B]) j <- j+1 if (j != p_B+1){ refine6(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) } else { refine10(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) } } refine10 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ print("refine 10") if (1 %in% M[i,] == FALSE){ FAIL <- 1 print(M) return(FAIL) } else { i <- i+1 if (i != (p_A)+1){ refine2(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) } else { if (elim != 0){ refine1(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) } else { return(M) } } } } I really don¹t now where the problem is. Hope that anybody can help me solving it. [[alternative HTML version deleted]]
Maximilian Kofler
2010-May-06 10:18 UTC
[R] Problem with nested functions - functions nested too deeply in source code
Forgot to add that function collation "and"'s two binary vectors. For example 1 0 0 and 1 0 1 in collation returns 1 0 0. But how already said, the algorithm itself should work fine because with small graphs I don't have problems
Duncan Murdoch
2010-May-07 11:19 UTC
[R] Problem with nested functions - functions nested too deeply in source code
Maximilian Kofler wrote:> Hi all! > > I?m just implementing the Ullmann?s algorithm for searching subgraph > isomorphisms in graphNEL objects. The algorithm is running with smaller > graphs, but when I?m calling it i get an R error message saying that > functions are nested too deeply in source code.I doubt if that was the error message. More likely you saw Error: evaluation nested too deeply: infinite recursion / options(expressions=)? (or perhaps a German translation of that). This isn't a case of the source being nested to deeply, but rather of the evaluation being nested too deeply. This happens in recursive algorithms when R runs out of stack space, around 5000 calls deep. Is it likely in your dataset that a recursion depth of 5000 is reasonable? In most cases this indicates a programming error that leads to an infinite recursion, but there are probably cases where a depth like that is reasonable. Duncan Murdoch> I found out that the problem > is in the so called refinement procedure of the algorithm which consists of > 10 different functions, returning an adjacency matrix. I?m calling the > refinement procedure with > > M <- refine1(M, A, B, p_A, p_B, FAIL) (note that all parameters in call > refine1 have been defined previosly) > > Then the following steps look like this > > ##################################### > # Refinement process # > ##################################### > > refine1 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ > > #print("refine 1") > > # elim marks if there was eliminated a 1 (and changed to 0) > > lst <- vector(mode = "numeric") > elim <- 0 > i <- 1 > > refine2(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) > } > > refine2 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ > > #print("refine 2") > > k <- 1 > h <- 1 > > sc <- vector(mode = "numeric", length = p_A) > > for (l in 1:p_A){ > > sc[l] <- 0 > } > > sc[1] <- 1 > > refine3(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) > } > > refine3 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ > > #print("refine 3") > > # check if there is a 1 in the current row in adjacency matrix of graph1 > which is on the same position of the 1 in sc > # sc is a binary string whith only one 1. The position of the one goes > from the first position of sc to the last position > # and is used for scanning. First this is done for graph 1, and than for > graph 2. Then it is checked if the following condition > # is fulfilled: (for all x) ((A[i,x] = 1) => (there exists one ore more > y) (M[x,y] * B[x,j] = 1)). The algorithm terminates if no more > # 1 can be changed in a 0 > > if (1 %in% collation(A[i,], sc) == FALSE){ > > refine4(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) > } > > else { > > > > lst[k] <- h > k <- k+1 > > refine4(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) > } > } > > refine4 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ > > #print("refine 4") > > sc <- c(0,sc[-p_A]) > h <- h+1 > > if (k != (rowSums(A)[i])+1){ > > refine3(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) > } > > else { > > refine5(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) > } > } > > refine5 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ > > #print("refine 5") > > j <- 1 > > sc <- vector(mode = "numeric", length = p_B) > > for (l in 1:p_B){ > > sc[l] <- 0 > } > > sc[1] <- 1 > > refine6(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) > } > > refine6 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ > > #print("refine 6") > > if (1 %in% collation(M[i,], sc) == FALSE){ > > refine9(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) > } > > else { > > h <- 1 > > refine7(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) > } > } > > refine7 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ > > #print("refine 7") > > x <- lst[h] > > if (1 %in% collation(M[x,], B[,j]) == FALSE){ > > refine8(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) > } > > else { > > h <- h+1 > > if (h != (rowSums(A)[i])+1){ > > refine7(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) > } > > else { > > refine9(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) > } > } > } > > refine8 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ > > #print("refine 8") > > not_sc <- vector(mode = "numeric", length = p_B) > > for (n in 1:p_B){ > > if (sc[n] == 1){ > > not_sc[n] <- 0 > } > else { > > not_sc[n] <- 1 > > } > } > > M[i,] <- collation(M[i,], not_sc) > > elim <- elim+1 > h <- h+1 > > refine9(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) > } > > refine9 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ > > #print("refine 9") > > sc <- c(0,sc[-p_B]) > j <- j+1 > > if (j != p_B+1){ > > refine6(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) > } > > else { > > refine10(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) > } > } > > refine10 <- function(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x){ > > print("refine 10") > > if (1 %in% M[i,] == FALSE){ > > FAIL <- 1 > print(M) > return(FAIL) > } > > else { > > i <- i+1 > > if (i != (p_A)+1){ > > refine2(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, x) > } > > else { > > > if (elim != 0){ > > refine1(M, A, B, p_A, p_B, FAIL, elim, i, j, k, sc, h, lst, > x) > } > > else { > > return(M) > } > } > } > } > > > I really don?t now where the problem is. Hope that anybody can help me > solving it. > > > > [[alternative HTML version deleted]] > > > ------------------------------------------------------------------------ > > ______________________________________________ > R-help at r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >