Hi all, Dear Dr. Wheeler, I am trying to use the lmPerm package to perform multiple regression on microarray data with certain empirical variables associated with treatments of the experiment. In order the circumvent the very conservative multiple test corrections such as Bonferroni and BH, I try to use permutated probabilities to assess associations. I started to read the manual/vignette. The example script on the dataset CC164gives some output which I find difficult to interpret. At this point I have two questions: Why is the number of iterations for every coefficient different (also in the Exact method)? In what sense do P.L and P.Q (or N.L and N.Q) differ? With a self made fake dataset, e.g. this one, the separate coefficients Q and L do not appear. y <- c(2563, 124, 597, 365, 248, 693, 975, 321, 965, 23, 89, 456, 123, 654, 71) z <- c(632, 235, 786, 241, 658, 301, 078, 932, 214, 657, 874, 369, 145, 314, 17) T <- rep(1:3, 5) L <- c(rep(1, 5), rep(2, 5), rep(3, 5)) Block <- rep(1:5, 3) fakedata <- as.data.frame(cbind(y, z, T, L, Block)) summary(lmp(y ~ z, data = fakedata, perm = "Exact")) summary(lmp(y ~ T*L, data = fakedata, perm = "Exact")) summary(lmp(z ~ T*L, data = fakedata, perm = "Exact")) > summary(lmp(y ~ z, data = fakedata, perm = "Exact")) [1] "Settings: unique SS : numeric variables centered" Call: lmp(formula = y ~ z, data = fakedata, perm = "Exact") Residuals: Min 1Q Median 3Q Max -544.2 -410.6 -172.7 131.1 1997.5 Coefficients: Estimate Iter Pr(Prob) z 0.07101 51 0.922 Residual standard error: 662.3 on 13 degrees of freedom Multiple R-Squared: 0.001104, Adjusted R-squared: -0.07573 F-statistic: 0.01437 on 1 and 13 DF, p-value: 0.9064 > summary(lmp(y ~ T*L, data = fakedata, perm = "Exact")) [1] "Settings: unique SS : numeric variables centered" Call: lmp(formula = y ~ T * L, data = fakedata, perm = "Exact") Residuals: Min 1Q Median 3Q Max -747.19 -456.15 -27.69 317.46 1450.81 Coefficients: Estimate Iter Pr(Prob) T -79.81 60 0.633 L -234.44 51 0.804 T:L 284.78 303 0.251 Residual standard error: 643.5 on 11 degrees of freedom Multiple R-Squared: 0.202, Adjusted R-squared: -0.01564 F-statistic: 0.9281 on 3 and 11 DF, p-value: 0.4595 > summary(lmp(z ~ T*L, data = fakedata, perm = "Exact")) [1] "Settings: unique SS : numeric variables centered" Call: lmp(formula = z ~ T * L, data = fakedata, perm = "Exact") Residuals: Min 1Q Median 3Q Max -354.10 -248.43 -43.19 181.02 516.81 Coefficients: Estimate Iter Pr(Prob) T 10.48 51 1.000 L -85.40 217 0.318 T:L -92.86 51 0.863 Residual standard error: 320.5 on 11 degrees of freedom Multiple R-Squared: 0.0959, Adjusted R-squared: -0.1507 F-statistic: 0.3889 on 3 and 11 DF, p-value: 0.7633 So there must be something I do not get from the vignette kind regrads, Thierry -- Thierry K.S. Janssens Vrije Universiteit Amsterdam Faculty of Earth and Life Sciences Institute of Ecological Science Department of Animal Ecology, De Boelelaan 1085 1081 HV AMSTERDAM, The Netherlands Phone: +31 (0)20-5989147 Fax: +31 (0)20-5987123 thierry.janssens at ecology.falw.vu.nl