Hi:
I need some help with the legend. I got 14 samples(Muestreo) and I
am trying to plot a smooth line for each sample. I am able to accomplish that
but the problem is that the legend only displays every other sample. How can I
force the legend to show all of my Muestreos? Thanks in advance.
fish_ByMuestreo <- structure(list(data = structure(list(SampleDate =
structure(c(3L,
3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 16L, 16L, 16L, 7L, 7L, 7L, 7L,
10L, 10L, 10L, 13L, 13L, 13L, 13L, 13L, 27L, 27L, 27L, 27L, 27L,
17L, 17L, 17L, 17L, 20L, 20L, 20L, 20L, 24L, 24L, 24L, 24L, 24L,
30L, 30L, 30L, 30L, 42L, 42L, 42L, 42L, 42L, 33L, 33L, 33L, 33L,
36L, 36L, 36L, 36L, 36L, 39L, 39L, 39L, 39L, 39L, 39L, 14L, 14L,
14L, 14L, 14L, 14L, 5L, 5L, 5L, 8L, 8L, 8L, 11L, 11L, 11L, 11L,
15L, 15L, 15L, 28L, 28L, 28L, 28L, 28L, 18L, 18L, 18L, 18L, 18L,
22L, 22L, 22L, 22L, 25L, 25L, 25L, 25L, 40L, 40L, 40L, 40L, 40L,
31L, 31L, 31L, 31L, 37L, 37L, 37L, 37L, 1L, 1L, 1L, 1L, 1L, 3L,
3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 16L, 16L, 16L, 7L, 7L, 7L, 7L,
10L, 10L, 10L, 13L, 13L, 13L, 13L, 13L, 27L, 27L, 27L, 27L, 27L,
17L, 17L, 17L, 17L, 20L, 20L, 20L, 20L, 24L, 24L, 24L, 24L, 24L,
30L, 30L, 30L, 30L, 42L, 42L, 42L, 42L, 42L, 33L, 33L, 33L, 33L,
36L, 36L, 36L, 36L, 36L, 14L, 14L, 14L, 14L, 14L, 14L, 5L, 5L,
5L, 8L, 8L, 8L, 11L, 11L, 11L, 11L, 15L, 15L, 15L, 28L, 28L,
28L, 28L, 28L, 18L, 18L, 18L, 18L, 18L, 22L, 22L, 22L, 22L, 25L,
25L, 25L, 25L, 40L, 40L, 40L, 40L, 40L, 31L, 31L, 31L, 31L, 34L,
34L, 34L, 34L, 34L, 37L, 37L, 37L, 37L, 1L, 1L, 1L, 1L, 1L, 6L,
6L, 6L, 6L, 6L, 6L, 9L, 9L, 9L, 12L, 12L, 12L, 21L, 21L, 21L,
21L, 29L, 29L, 29L, 19L, 19L, 19L, 19L, 19L, 23L, 23L, 23L, 23L,
23L, 26L, 26L, 26L, 26L, 41L, 41L, 41L, 41L, 32L, 32L, 32L, 32L,
32L, 35L, 35L, 35L, 35L, 38L, 38L, 38L, 38L, 38L, 2L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 16L, 16L, 16L, 7L, 7L,
7L, 7L, 10L, 10L, 10L, 13L, 13L, 13L, 13L, 13L, 27L, 27L, 27L,
27L, 27L, 17L, 17L, 17L, 17L, 20L, 20L, 20L, 20L, 24L, 24L, 24L,
24L, 24L, 30L, 30L, 30L, 30L, 42L, 42L, 42L, 42L, 42L, 33L, 33L,
33L, 33L, 36L, 36L, 36L, 36L, 36L, 39L, 39L, 39L, 39L, 39L, 39L,
3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 16L, 16L, 16L, 7L, 7L, 7L,
7L, 10L, 10L, 10L, 13L, 13L, 13L, 13L, 13L, 27L, 27L, 27L, 27L,
27L, 17L, 17L, 17L, 17L, 20L, 20L, 20L, 20L, 24L, 24L, 24L, 24L,
24L, 30L, 30L, 30L, 30L, 42L, 42L, 42L, 42L, 42L, 33L, 33L, 33L,
33L, 36L, 36L, 36L, 36L, 36L, 39L, 39L, 39L, 39L, 39L, 39L), .Label =
c("10/2/2002",
"10/4/2002", "6/23/2002", "6/30/2002",
"7/10/2002", "7/12/2002",
"7/14/2002", "7/17/2002", "7/19/2002",
"7/21/2002", "7/24/2002",
"7/26/2002", "7/28/2002", "7/3/2002",
"7/31/2002", "7/7/2002",
"8/11/2002", "8/14/2002", "8/16/2002",
"8/18/2002", "8/2/2002",
"8/21/2002", "8/23/2002", "8/25/2002",
"8/28/2002", "8/30/2002",
"8/4/2002", "8/7/2002", "8/9/2002",
"9/1/2002", "9/11/2002",
"9/13/2002", "9/15/2002", "9/18/2002",
"9/20/2002", "9/22/2002",
"9/25/2002", "9/27/2002", "9/29/2002",
"9/4/2002", "9/6/2002",
"9/8/2002"), class = "factor"), PondName = structure(c(1L,
1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L), .Label = c("Pond01",
"Pond02", "Pond03", "Pond04", "Pond05",
"Pond06", "Pond07"), class = "factor"),
Muestreo = c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L,
3L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L,
7L, 7L, 7L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L,
10L, 10L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 13L,
13L, 13L, 13L, 14L, 14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L,
15L, 15L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L,
4L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L,
7L, 7L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L,
10L, 11L, 11L, 11L, 11L, 13L, 13L, 13L, 13L, 14L, 14L, 14L,
14L, 14L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L,
4L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L,
7L, 7L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L,
10L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 13L, 13L,
13L, 13L, 14L, 14L, 14L, 14L, 14L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L,
6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 9L, 9L, 9L,
9L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 12L, 12L,
12L, 12L, 12L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L, 14L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L,
4L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 8L,
8L, 8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 11L,
11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L,
4L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 8L,
8L, 8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 11L,
11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L,
14L, 14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 4L,
5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 8L, 8L,
8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 11L, 11L,
11L, 11L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 14L,
14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L), BodyWeight.g. = c(1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4.5, 5,
7, 6, 7, 6, 7, 8, 7, 8, 7, 9, 8, 9, 8, 9, 11, 11, 10, 12,
11, 10, 12, 10.5, 14, 14, 13, 13.5, 17, 16, 14, 15, 14, 17,
16, 17, 15.5, 18, 18, 18, 17, 18, 19, 21, 21, 21, 25, 22,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4.5,
5, 7, 6, 7, 6, 7, 8, 7, 8, 7, 9, 8, 9, 8, 9, 11, 11, 10,
12, 11, 10, 12, 10.5, 14, 14, 13, 13.5, 17, 16, 17, 15.5,
18, 18, 18, 17, 18, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,
2, 2, 2, 3, 4, 4.5, 5, 7, 6, 7, 6, 7, 8, 7, 8, 7, 9, 8, 9,
8, 9, 11, 11, 10, 11, 10, 12, 10.5, 12, 14, 14, 13, 13.5,
17, 16, 14, 15, 14, 17, 16, 17, 15.5, 18, 18, 18, 17, 18,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4.5,
5, 7, 6, 7, 6, 7, 8, 7, 8, 7, 9, 8, 9, 8, 9, 11, 11, 10,
12, 11, 10, 12, 10.5, 14, 14, 13, 13.5, 17, 16, 14, 15, 14,
17, 16, 17, 15.5, 18, 18, 18, 17, 18, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4.5, 5, 7, 6, 7, 6, 7, 8,
7, 8, 7, 9, 8, 9, 8, 9, 11, 11, 10, 12, 11, 10, 12, 10.5,
14, 14, 13, 13.5, 17, 16, 14, 15, 14, 17, 16, 17, 15.5, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4.5, 5,
7, 6, 7, 6, 7, 8, 7, 8, 7, 9, 8, 9, 8, 9, 11, 11, 10, 12,
11, 10, 12, 10.5, 14, 14, 13, 13.5, 17, 16, 14, 15, 14, 17,
16, 17, 15.5, 18, 18, 18, 17, 18, 19, 21, 21, 21, 25, 22,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4.5,
5, 7, 6, 7, 6, 7, 8, 7, 8, 7, 9, 8, 9, 8, 9, 11, 11, 10,
12, 11, 10, 12, 10.5, 14, 14, 13, 13.5, 17, 16, 14, 15, 14,
17, 16, 17, 15.5, 18, 18, 18, 17, 18, 19, 21, 21, 21, 25,
22), Length.mm. = c(2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
2L, 2L, 3L, 4L, 5L, 3L, 4L, 5L, 5L, 6L, 6L, 7L, 5L, 6L, 7L,
8L, 8L, 9L, 8L, 8L, 9L, 9L, 8L, 9L, 10L, 11L, 10L, 10L, 11L,
12L, 11L, 12L, 12L, 13L, 14L, 12L, 13L, 14L, 15L, 16L, 15L,
14L, 15L, 16L, 16L, 15L, 16L, 17L, 16L, 17L, 16L, 17L, 18L,
19L, 17L, 18L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L,
2L, 3L, 4L, 5L, 3L, 4L, 5L, 5L, 6L, 6L, 7L, 5L, 6L, 7L, 8L,
8L, 9L, 8L, 8L, 9L, 9L, 8L, 9L, 10L, 11L, 10L, 10L, 11L,
12L, 11L, 12L, 12L, 13L, 14L, 12L, 14L, 15L, 16L, 16L, 15L,
16L, 17L, 16L, 17L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
2L, 2L, 3L, 4L, 5L, 3L, 4L, 5L, 5L, 6L, 6L, 7L, 5L, 6L, 7L,
8L, 8L, 9L, 8L, 8L, 9L, 9L, 8L, 9L, 10L, 11L, 10L, 11L, 12L,
11L, 12L, 10L, 12L, 13L, 14L, 12L, 13L, 14L, 15L, 16L, 15L,
14L, 15L, 16L, 16L, 15L, 16L, 17L, 16L, 17L, 2L, 2L, 3L,
2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, 2L, 3L, 4L, 5L, 3L, 4L, 5L,
5L, 6L, 6L, 7L, 5L, 6L, 7L, 8L, 8L, 9L, 8L, 8L, 9L, 9L, 8L,
9L, 10L, 11L, 10L, 10L, 11L, 12L, 11L, 12L, 12L, 13L, 14L,
12L, 13L, 14L, 15L, 16L, 15L, 14L, 15L, 16L, 16L, 15L, 16L,
17L, 16L, 17L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L,
2L, 3L, 4L, 5L, 3L, 4L, 5L, 5L, 6L, 6L, 7L, 5L, 6L, 7L, 8L,
8L, 9L, 8L, 8L, 9L, 9L, 8L, 9L, 10L, 11L, 10L, 10L, 11L,
12L, 11L, 12L, 12L, 13L, 14L, 12L, 13L, 14L, 15L, 16L, 15L,
14L, 15L, 16L, 16L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
2L, 2L, 3L, 4L, 5L, 3L, 4L, 5L, 5L, 6L, 6L, 7L, 5L, 6L, 7L,
8L, 8L, 9L, 8L, 8L, 9L, 9L, 8L, 9L, 10L, 11L, 10L, 10L, 11L,
12L, 11L, 12L, 12L, 13L, 14L, 12L, 13L, 14L, 15L, 16L, 15L,
14L, 15L, 16L, 16L, 15L, 16L, 17L, 16L, 17L, 16L, 17L, 18L,
19L, 17L, 18L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L,
2L, 3L, 4L, 5L, 3L, 4L, 5L, 5L, 6L, 6L, 7L, 5L, 6L, 7L, 8L,
8L, 9L, 8L, 8L, 9L, 9L, 8L, 9L, 10L, 11L, 10L, 10L, 11L,
12L, 11L, 12L, 12L, 13L, 14L, 12L, 13L, 14L, 15L, 16L, 15L,
14L, 15L, 16L, 16L, 15L, 16L, 17L, 16L, 17L, 16L, 17L, 18L,
19L, 17L, 18L)), .Names = c("SampleDate", "PondName",
"Muestreo",
"BodyWeight.g.", "Length.mm."), class =
"data.frame", row.names = c("1",
"2", "3", "4", "5", "6",
"7", "8", "9", "10", "11",
"12", "13",
"14", "15", "16", "17", "18",
"19", "20", "21", "22", "23",
"24",
"25", "26", "27", "28", "29",
"30", "31", "32", "33", "34",
"35",
"36", "37", "38", "39", "40",
"41", "42", "43", "44", "45",
"46",
"47", "48", "49", "50", "51",
"52", "53", "54", "55", "56",
"57",
"58", "59", "60", "61", "62",
"63", "64", "65", "66", "67",
"68",
"69", "70", "71", "72", "73",
"74", "75", "76", "77", "78",
"79",
"80", "81", "82", "83", "84",
"85", "86", "87", "88", "89",
"90",
"91", "92", "93", "94", "95",
"96", "97", "98", "99", "100",
"101", "102", "103", "104",
"105", "106", "107", "108",
"109",
"110", "111", "112", "113",
"114", "115", "116", "117",
"118",
"119", "120", "121", "122",
"123", "124", "125", "126",
"127",
"128", "129", "130", "131",
"132", "133", "134", "135",
"136",
"137", "138", "139", "140",
"141", "142", "143", "144",
"145",
"146", "147", "148", "149",
"150", "151", "152", "153",
"154",
"155", "156", "157", "158",
"159", "160", "161", "162",
"163",
"164", "165", "166", "167",
"168", "169", "170", "171",
"172",
"173", "174", "175", "176",
"177", "178", "179", "180",
"181",
"182", "183", "184", "185",
"186", "187", "188", "189",
"190",
"191", "192", "193", "194",
"195", "196", "197", "198",
"199",
"200", "201", "202", "203",
"204", "205", "206", "207",
"208",
"209", "210", "211", "212",
"213", "214", "215", "216",
"217",
"218", "219", "220", "221",
"222", "223", "224", "225",
"226",
"227", "228", "229", "230",
"231", "232", "233", "234",
"235",
"236", "237", "238", "239",
"240", "241", "242", "243",
"244",
"245", "246", "247", "248",
"249", "250", "251", "252",
"253",
"254", "255", "256", "257",
"258", "259", "260", "261",
"262",
"263", "264", "265", "266",
"267", "268", "269", "270",
"271",
"272", "273", "274", "275",
"276", "277", "278", "279",
"280",
"281", "282", "283", "284",
"285", "286", "287", "288",
"289",
"290", "291", "292", "293",
"294", "295", "296", "297",
"298",
"299", "300", "301", "302",
"303", "304", "305", "306",
"307",
"308", "309", "310", "311",
"312", "313", "314", "315",
"316",
"317", "318", "319", "320",
"321", "322", "323", "324",
"325",
"326", "327", "328", "329",
"330", "331", "332", "333",
"334",
"335", "336", "337", "338",
"339", "340", "341", "342",
"343",
"344", "345", "346", "347",
"348", "349", "350", "351",
"352",
"353", "354", "355", "356",
"357", "358", "359", "360",
"361",
"362", "363", "364", "365",
"366", "367", "368", "369",
"370",
"371", "372", "373", "374",
"375", "376", "377", "378",
"379",
"380", "381", "382", "383",
"384", "385", "386", "387",
"388",
"389", "390", "391", "392",
"393", "394", "395", "396",
"397",
"398", "399", "400", "401",
"402", "403", "404", "405",
"406",
"407", "408", "409", "410",
"411", "412", "413", "414",
"415",
"416", "417", "418", "419",
"420", "421", "422", "423",
"424",
"425", "426", "427", "428"))
library(ggplot2)
fishplot <-
qplot(PondName,BodyWeight.g.,data=fish_ByMuestreo,colour=Muestreo,position="jitter")
+
stat_summary(aes(group=Muestreo),fun.data="mean_cl_normal",colour="green",geom="smooth",fill=NA)
+
opts(title="Average weight(grs) by Pond")
print(fishplot)
Felipe D. Carrillo
Supervisory Fishery Biologist
Department of the Interior
US Fish & Wildlife Service
California, USA
First, your example didn't work because fish_ByMuestreo didn't build properly (deleting the first "structure(list(data = " bit solves this). To solve your plotting problem, note that as constructed, the Muestreo column is numeric, whereas you seem to want to treat it as a factor. Solution: convert to factor: fish_ByMuestreo$Muestreo=factor(fish_ByMuestreo$Muestreo) On Thu, May 28, 2009 at 3:47 PM, Felipe Carrillo <mazatlanmexico at yahoo.com> wrote:> > Hi: > ?I need some help with the legend. I got 14 samples(Muestreo) and I > ?am trying to plot a smooth line for each sample. I am able to accomplish that but the problem is that the legend only displays every other sample. How can I force the legend to show all of my Muestreos? Thanks in advance. > > fish_ByMuestreo <- structure(list(data = structure(list(SampleDate = structure(c(3L, > 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 16L, 16L, 16L, 7L, 7L, 7L, 7L, > 10L, 10L, 10L, 13L, 13L, 13L, 13L, 13L, 27L, 27L, 27L, 27L, 27L, > 17L, 17L, 17L, 17L, 20L, 20L, 20L, 20L, 24L, 24L, 24L, 24L, 24L, > 30L, 30L, 30L, 30L, 42L, 42L, 42L, 42L, 42L, 33L, 33L, 33L, 33L, > 36L, 36L, 36L, 36L, 36L, 39L, 39L, 39L, 39L, 39L, 39L, 14L, 14L, > 14L, 14L, 14L, 14L, 5L, 5L, 5L, 8L, 8L, 8L, 11L, 11L, 11L, 11L, > 15L, 15L, 15L, 28L, 28L, 28L, 28L, 28L, 18L, 18L, 18L, 18L, 18L, > 22L, 22L, 22L, 22L, 25L, 25L, 25L, 25L, 40L, 40L, 40L, 40L, 40L, > 31L, 31L, 31L, 31L, 37L, 37L, 37L, 37L, 1L, 1L, 1L, 1L, 1L, 3L, > 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 16L, 16L, 16L, 7L, 7L, 7L, 7L, > 10L, 10L, 10L, 13L, 13L, 13L, 13L, 13L, 27L, 27L, 27L, 27L, 27L, > 17L, 17L, 17L, 17L, 20L, 20L, 20L, 20L, 24L, 24L, 24L, 24L, 24L, > 30L, 30L, 30L, 30L, 42L, 42L, 42L, 42L, 42L, 33L, 33L, 33L, 33L, > 36L, 36L, 36L, 36L, 36L, 14L, 14L, 14L, 14L, 14L, 14L, 5L, 5L, > 5L, 8L, 8L, 8L, 11L, 11L, 11L, 11L, 15L, 15L, 15L, 28L, 28L, > 28L, 28L, 28L, 18L, 18L, 18L, 18L, 18L, 22L, 22L, 22L, 22L, 25L, > 25L, 25L, 25L, 40L, 40L, 40L, 40L, 40L, 31L, 31L, 31L, 31L, 34L, > 34L, 34L, 34L, 34L, 37L, 37L, 37L, 37L, 1L, 1L, 1L, 1L, 1L, 6L, > 6L, 6L, 6L, 6L, 6L, 9L, 9L, 9L, 12L, 12L, 12L, 21L, 21L, 21L, > 21L, 29L, 29L, 29L, 19L, 19L, 19L, 19L, 19L, 23L, 23L, 23L, 23L, > 23L, 26L, 26L, 26L, 26L, 41L, 41L, 41L, 41L, 32L, 32L, 32L, 32L, > 32L, 35L, 35L, 35L, 35L, 38L, 38L, 38L, 38L, 38L, 2L, 2L, 2L, > 2L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 16L, 16L, 16L, 7L, 7L, > 7L, 7L, 10L, 10L, 10L, 13L, 13L, 13L, 13L, 13L, 27L, 27L, 27L, > 27L, 27L, 17L, 17L, 17L, 17L, 20L, 20L, 20L, 20L, 24L, 24L, 24L, > 24L, 24L, 30L, 30L, 30L, 30L, 42L, 42L, 42L, 42L, 42L, 33L, 33L, > 33L, 33L, 36L, 36L, 36L, 36L, 36L, 39L, 39L, 39L, 39L, 39L, 39L, > 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 16L, 16L, 16L, 7L, 7L, 7L, > 7L, 10L, 10L, 10L, 13L, 13L, 13L, 13L, 13L, 27L, 27L, 27L, 27L, > 27L, 17L, 17L, 17L, 17L, 20L, 20L, 20L, 20L, 24L, 24L, 24L, 24L, > 24L, 30L, 30L, 30L, 30L, 42L, 42L, 42L, 42L, 42L, 33L, 33L, 33L, > 33L, 36L, 36L, 36L, 36L, 36L, 39L, 39L, 39L, 39L, 39L, 39L), .Label = c("10/2/2002", > "10/4/2002", "6/23/2002", "6/30/2002", "7/10/2002", "7/12/2002", > "7/14/2002", "7/17/2002", "7/19/2002", "7/21/2002", "7/24/2002", > "7/26/2002", "7/28/2002", "7/3/2002", "7/31/2002", "7/7/2002", > "8/11/2002", "8/14/2002", "8/16/2002", "8/18/2002", "8/2/2002", > "8/21/2002", "8/23/2002", "8/25/2002", "8/28/2002", "8/30/2002", > "8/4/2002", "8/7/2002", "8/9/2002", "9/1/2002", "9/11/2002", > "9/13/2002", "9/15/2002", "9/18/2002", "9/20/2002", "9/22/2002", > "9/25/2002", "9/27/2002", "9/29/2002", "9/4/2002", "9/6/2002", > "9/8/2002"), class = "factor"), PondName = structure(c(1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, > 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, > 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, > 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, > 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, > 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, > 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, > 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, > 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, > 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, > 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, > 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, > 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, > 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, > 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, > 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, > 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, > 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, > 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, > 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L), .Label = c("Pond01", > "Pond02", "Pond03", "Pond04", "Pond05", "Pond06", "Pond07"), class = "factor"), > ? ?Muestreo = c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, > ? ?3L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, > ? ?7L, 7L, 7L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, > ? ?10L, 10L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 13L, > ? ?13L, 13L, 13L, 14L, 14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, > ? ?15L, 15L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, > ? ?4L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, > ? ?7L, 7L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, > ? ?10L, 11L, 11L, 11L, 11L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, > ? ?14L, 14L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, > ? ?4L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, > ? ?7L, 7L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, > ? ?10L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, > ? ?13L, 13L, 14L, 14L, 14L, 14L, 14L, 1L, 1L, 1L, 1L, 1L, 1L, > ? ?2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, > ? ?6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, > ? ?9L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 12L, 12L, > ? ?12L, 12L, 12L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L, 14L, > ? ?1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, > ? ?4L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 8L, > ? ?8L, 8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 11L, > ? ?11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, > ? ?1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, > ? ?4L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 8L, > ? ?8L, 8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 11L, > ? ?11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, > ? ?14L, 14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L, 1L, > ? ?1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, > ? ?5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, > ? ?8L, 8L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, > ? ?11L, 11L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 14L, > ? ?14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L), BodyWeight.g. = c(1, > ? ?1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4.5, 5, > ? ?7, 6, 7, 6, 7, 8, 7, 8, 7, 9, 8, 9, 8, 9, 11, 11, 10, 12, > ? ?11, 10, 12, 10.5, 14, 14, 13, 13.5, 17, 16, 14, 15, 14, 17, > ? ?16, 17, 15.5, 18, 18, 18, 17, 18, 19, 21, 21, 21, 25, 22, > ? ?1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4.5, > ? ?5, 7, 6, 7, 6, 7, 8, 7, 8, 7, 9, 8, 9, 8, 9, 11, 11, 10, > ? ?12, 11, 10, 12, 10.5, 14, 14, 13, 13.5, 17, 16, 17, 15.5, > ? ?18, 18, 18, 17, 18, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, > ? ?2, 2, 2, 3, 4, 4.5, 5, 7, 6, 7, 6, 7, 8, 7, 8, 7, 9, 8, 9, > ? ?8, 9, 11, 11, 10, 11, 10, 12, 10.5, 12, 14, 14, 13, 13.5, > ? ?17, 16, 14, 15, 14, 17, 16, 17, 15.5, 18, 18, 18, 17, 18, > ? ?1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4.5, > ? ?5, 7, 6, 7, 6, 7, 8, 7, 8, 7, 9, 8, 9, 8, 9, 11, 11, 10, > ? ?12, 11, 10, 12, 10.5, 14, 14, 13, 13.5, 17, 16, 14, 15, 14, > ? ?17, 16, 17, 15.5, 18, 18, 18, 17, 18, 1, 1, 1, 1, 1, 1, 1, > ? ?1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4.5, 5, 7, 6, 7, 6, 7, 8, > ? ?7, 8, 7, 9, 8, 9, 8, 9, 11, 11, 10, 12, 11, 10, 12, 10.5, > ? ?14, 14, 13, 13.5, 17, 16, 14, 15, 14, 17, 16, 17, 15.5, 1, > ? ?1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4.5, 5, > ? ?7, 6, 7, 6, 7, 8, 7, 8, 7, 9, 8, 9, 8, 9, 11, 11, 10, 12, > ? ?11, 10, 12, 10.5, 14, 14, 13, 13.5, 17, 16, 14, 15, 14, 17, > ? ?16, 17, 15.5, 18, 18, 18, 17, 18, 19, 21, 21, 21, 25, 22, > ? ?1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4.5, > ? ?5, 7, 6, 7, 6, 7, 8, 7, 8, 7, 9, 8, 9, 8, 9, 11, 11, 10, > ? ?12, 11, 10, 12, 10.5, 14, 14, 13, 13.5, 17, 16, 14, 15, 14, > ? ?17, 16, 17, 15.5, 18, 18, 18, 17, 18, 19, 21, 21, 21, 25, > ? ?22), Length.mm. = c(2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, > ? ?2L, 2L, 3L, 4L, 5L, 3L, 4L, 5L, 5L, 6L, 6L, 7L, 5L, 6L, 7L, > ? ?8L, 8L, 9L, 8L, 8L, 9L, 9L, 8L, 9L, 10L, 11L, 10L, 10L, 11L, > ? ?12L, 11L, 12L, 12L, 13L, 14L, 12L, 13L, 14L, 15L, 16L, 15L, > ? ?14L, 15L, 16L, 16L, 15L, 16L, 17L, 16L, 17L, 16L, 17L, 18L, > ? ?19L, 17L, 18L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, > ? ?2L, 3L, 4L, 5L, 3L, 4L, 5L, 5L, 6L, 6L, 7L, 5L, 6L, 7L, 8L, > ? ?8L, 9L, 8L, 8L, 9L, 9L, 8L, 9L, 10L, 11L, 10L, 10L, 11L, > ? ?12L, 11L, 12L, 12L, 13L, 14L, 12L, 14L, 15L, 16L, 16L, 15L, > ? ?16L, 17L, 16L, 17L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, > ? ?2L, 2L, 3L, 4L, 5L, 3L, 4L, 5L, 5L, 6L, 6L, 7L, 5L, 6L, 7L, > ? ?8L, 8L, 9L, 8L, 8L, 9L, 9L, 8L, 9L, 10L, 11L, 10L, 11L, 12L, > ? ?11L, 12L, 10L, 12L, 13L, 14L, 12L, 13L, 14L, 15L, 16L, 15L, > ? ?14L, 15L, 16L, 16L, 15L, 16L, 17L, 16L, 17L, 2L, 2L, 3L, > ? ?2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, 2L, 3L, 4L, 5L, 3L, 4L, 5L, > ? ?5L, 6L, 6L, 7L, 5L, 6L, 7L, 8L, 8L, 9L, 8L, 8L, 9L, 9L, 8L, > ? ?9L, 10L, 11L, 10L, 10L, 11L, 12L, 11L, 12L, 12L, 13L, 14L, > ? ?12L, 13L, 14L, 15L, 16L, 15L, 14L, 15L, 16L, 16L, 15L, 16L, > ? ?17L, 16L, 17L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, > ? ?2L, 3L, 4L, 5L, 3L, 4L, 5L, 5L, 6L, 6L, 7L, 5L, 6L, 7L, 8L, > ? ?8L, 9L, 8L, 8L, 9L, 9L, 8L, 9L, 10L, 11L, 10L, 10L, 11L, > ? ?12L, 11L, 12L, 12L, 13L, 14L, 12L, 13L, 14L, 15L, 16L, 15L, > ? ?14L, 15L, 16L, 16L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, > ? ?2L, 2L, 3L, 4L, 5L, 3L, 4L, 5L, 5L, 6L, 6L, 7L, 5L, 6L, 7L, > ? ?8L, 8L, 9L, 8L, 8L, 9L, 9L, 8L, 9L, 10L, 11L, 10L, 10L, 11L, > ? ?12L, 11L, 12L, 12L, 13L, 14L, 12L, 13L, 14L, 15L, 16L, 15L, > ? ?14L, 15L, 16L, 16L, 15L, 16L, 17L, 16L, 17L, 16L, 17L, 18L, > ? ?19L, 17L, 18L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, > ? ?2L, 3L, 4L, 5L, 3L, 4L, 5L, 5L, 6L, 6L, 7L, 5L, 6L, 7L, 8L, > ? ?8L, 9L, 8L, 8L, 9L, 9L, 8L, 9L, 10L, 11L, 10L, 10L, 11L, > ? ?12L, 11L, 12L, 12L, 13L, 14L, 12L, 13L, 14L, 15L, 16L, 15L, > ? ?14L, 15L, 16L, 16L, 15L, 16L, 17L, 16L, 17L, 16L, 17L, 18L, > ? ?19L, 17L, 18L)), .Names = c("SampleDate", "PondName", "Muestreo", > "BodyWeight.g.", "Length.mm."), class = "data.frame", row.names = c("1", > "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", > "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", > "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", > "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", > "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", > "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", > "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", > "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "90", > "91", "92", "93", "94", "95", "96", "97", "98", "99", "100", > "101", "102", "103", "104", "105", "106", "107", "108", "109", > "110", "111", "112", "113", "114", "115", "116", "117", "118", > "119", "120", "121", "122", "123", "124", "125", "126", "127", > "128", "129", "130", "131", "132", "133", "134", "135", "136", > "137", "138", "139", "140", "141", "142", "143", "144", "145", > "146", "147", "148", "149", "150", "151", "152", "153", "154", > "155", "156", "157", "158", "159", "160", "161", "162", "163", > "164", "165", "166", "167", "168", "169", "170", "171", "172", > "173", "174", "175", "176", "177", "178", "179", "180", "181", > "182", "183", "184", "185", "186", "187", "188", "189", "190", > "191", "192", "193", "194", "195", "196", "197", "198", "199", > "200", "201", "202", "203", "204", "205", "206", "207", "208", > "209", "210", "211", "212", "213", "214", "215", "216", "217", > "218", "219", "220", "221", "222", "223", "224", "225", "226", > "227", "228", "229", "230", "231", "232", "233", "234", "235", > "236", "237", "238", "239", "240", "241", "242", "243", "244", > "245", "246", "247", "248", "249", "250", "251", "252", "253", > "254", "255", "256", "257", "258", "259", "260", "261", "262", > "263", "264", "265", "266", "267", "268", "269", "270", "271", > "272", "273", "274", "275", "276", "277", "278", "279", "280", > "281", "282", "283", "284", "285", "286", "287", "288", "289", > "290", "291", "292", "293", "294", "295", "296", "297", "298", > "299", "300", "301", "302", "303", "304", "305", "306", "307", > "308", "309", "310", "311", "312", "313", "314", "315", "316", > "317", "318", "319", "320", "321", "322", "323", "324", "325", > "326", "327", "328", "329", "330", "331", "332", "333", "334", > "335", "336", "337", "338", "339", "340", "341", "342", "343", > "344", "345", "346", "347", "348", "349", "350", "351", "352", > "353", "354", "355", "356", "357", "358", "359", "360", "361", > "362", "363", "364", "365", "366", "367", "368", "369", "370", > "371", "372", "373", "374", "375", "376", "377", "378", "379", > "380", "381", "382", "383", "384", "385", "386", "387", "388", > "389", "390", "391", "392", "393", "394", "395", "396", "397", > "398", "399", "400", "401", "402", "403", "404", "405", "406", > "407", "408", "409", "410", "411", "412", "413", "414", "415", > "416", "417", "418", "419", "420", "421", "422", "423", "424", > "425", "426", "427", "428")) > library(ggplot2) > fishplot <- ?qplot(PondName,BodyWeight.g.,data=fish_ByMuestreo,colour=Muestreo,position="jitter") + > ?stat_summary(aes(group=Muestreo),fun.data="mean_cl_normal",colour="green",geom="smooth",fill=NA) + > opts(title="Average weight(grs) by Pond") > print(fishplot) > > > Felipe D. Carrillo > Supervisory Fishery Biologist > Department of the Interior > US Fish & Wildlife Service > California, USA > > ______________________________________________ > R-help at r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >-- Mike Lawrence Graduate Student Department of Psychology Dalhousie University Looking to arrange a meeting? Check my public calendar: http://tr.im/mikes_public_calendar ~ Certainty is folly... I think. ~
Thanks for your help Mike, it works like a charm now!! --- On Thu, 5/28/09, Mike Lawrence <Mike.Lawrence at dal.ca> wrote:> From: Mike Lawrence <Mike.Lawrence at dal.ca> > Subject: Re: [R] ggplot2 legend > To: "Felipe Carrillo" <mazatlanmexico at yahoo.com> > Cc: r-help at stat.math.ethz.ch > Date: Thursday, May 28, 2009, 1:06 PM > First, your example didn't work > because fish_ByMuestreo didn't build > properly (deleting the first "structure(list(data = " bit > solves > this). > > To solve your plotting problem, note that as constructed, > the Muestreo > column is numeric, whereas you seem to want to treat it as > a factor. > Solution: convert to factor: > > fish_ByMuestreo$Muestreo=factor(fish_ByMuestreo$Muestreo) > > On Thu, May 28, 2009 at 3:47 PM, Felipe Carrillo > <mazatlanmexico at yahoo.com> > wrote: > > > > Hi: > > ?I need some help with the legend. I got 14 > samples(Muestreo) and I > > ?am trying to plot a smooth line for each sample. I > am able to accomplish that but the problem is that the > legend only displays every other sample. How can I force the > legend to show all of my Muestreos? Thanks in advance. > > library(ggplot2) > > fishplot <- > ?qplot(PondName,BodyWeight.g.,data=fish_ByMuestreo,colour=Muestreo,position="jitter")+stat_summary(aes(group=Muestreo),fun.data="mean_cl_normal",colour="green",geom="smooth",fill=NA)+ opts(title="Average weight(grs) by Pond") print(fishplot)> > Felipe D. Carrillo > > Supervisory Fishery Biologist > > Department of the Interior > > US Fish & Wildlife Service > > California, USA> Mike Lawrence > Graduate Student > Department of Psychology > Dalhousie University