Hi R users, I'm trying to run a SVM - regression using e1071 package but the function svm() all the time apply a classification method rather than a regression. svm.m1 <- svm(st ~ ., data = train, cost = 1000, gamma = 1e-03) Parameters: SVM-Type: C-classification SVM-Kernel: radial cost: 1000 gamma: 0.001 Number of Support Vectors: 209 When I specify the method ="eps-regression" is the same svm.m1 <- svm(st ~ ., data = train, method="eps-regression", cost = 1000, gamma = 1e-03) Call: svm(formula = st ~ ., data = train, method = "eps-regression", cost = 1000, gamma = 0.001) Parameters: SVM-Type: C-classification SVM-Kernel: radial cost: 1000 gamma: 0.001 Number of Support Vectors: 209 I know that it is wrong because when I do prediction appear levels. I'm working with normalized data [0,1] (249 points) . I don't have idea what it is wrong. Somebody can help me? h_aspire dados=read.table("svmdata.txt",header=TRUE) index=1:nrow(d) test=d[210:249,] train=d[1:209,] require(e1071) tuneobj = tune.svm(st ~ ., data = train, gamma = 10^(-6:-3), cost = 10^(1:3summary(tuneobj) svm.m1 <- svm(st ~ ., data = train, cost = 1000, gamma = 1e-03) svm.pred <- predict(svm.m1, test) [[alternative HTML version deleted]]