similar to: Problems to run SVM regression with e1071

Displaying 20 results from an estimated 3000 matches similar to: "Problems to run SVM regression with e1071"

2010 May 14
4
Categorical Predictors for SVM (e1071)
Dear all, I have a question about using categorical predictors for SVM, using "svm" from library(e1071). If I have multiple categorical predictors, should they just be included as factors? Take a simple artificial data example: x1<-rnorm(500) x2<-rnorm(500) #Categorical Predictor 1, with 5 levels x3<-as.factor(rep(c(1,2,3,4,5),c(50,150,130,70,100))) #Catgegorical Predictor
2011 Feb 23
0
svm(e1071) and scaling of weights
I expected, that I will get the same prediction, if I multiply the weights for all classes with a constant factor, but I got different results. Please look for the following code. > library(e1071) > data(Glass, package = "mlbench") > index <- 1:nrow(Glass) > testindex <- sample(index, trunc(length(index)/5)) > testset <- Glass[testindex, ] > trainset <-
2010 May 05
2
probabilities in svm output in e1071 package
svm.fit<-svm(as.factor(out) ~ ., data=all_h, method="C-classification", kernel="radial", cost=bestc, gamma=bestg, cross=10) # model fitting svm.pred<-predict(svm.fit, hh, decision.values = TRUE, probability = TRUE) # find the probability, but can not find. attr(svm.pred, "probabilities") > attr(svm.pred, "probabilities") 1 0 1 0 0 2 0
2007 Oct 27
1
problems in cross validation of SVM in pakage "e1071"
Hi: I am a newer in using R for data mining, and find the "e1071" pakage an excellent tool in doing data mining work! what frustrated me recently is that when I using the function "svm" and using the "cross=10" parameters, I got all the "accuracies" of the model greater than 1. Isn't that the accuracy should be smaller than 1? so I wander how, the
2009 Feb 20
0
e1071 package for SVM
Dear all, I got a code for e1071 package in R for SVM regression. I have used *m$coefs* for extracting the coefficients but I am getting only 72 . How can I extract coefficients of the predictors set? Does it mean that I will get only 72 as *Number of Support Vectors: 72. * ** Thanks in advance Code: -------------- library(e1071) > # create data > x <- seq(0.1, 5,
2010 Apr 29
2
can not print probabilities in svm of e1071
> x <- train[,c( 2:18, 20:21, 24, 27:31)] > y <- train$out > > svm.pr <- svm(x, y, probability = TRUE, method="C-classification", kernel="radial", cost=bestc, gamma=bestg, cross=10) > > pred <- predict(svm.pr, valid[,c( 2:18, 20:21, 24, 27:31)], decision.values = TRUE, probability = TRUE) > attr(pred, "decision.values")[1:4,]
2017 Sep 02
0
problem in testing data with e1071 package (SVM Multiclass)
Hello all, this is the first time I'm using R and e1071 package and SVM multiclass (and I'm not a statistician)! I'm very confused, then. The goal is: I have a sentence with sunny; it will be classified as "yes" sentence; I have a sentence with cloud, it will be classified as "maybe"; I have a sentence with rainy il will be classified as "no". The
2011 Mar 04
1
Probabilities outside [0, 1] using Support Vector Machines (SVM) in e1071
Hi All, I'm attempting to use eps-regression or nu-regression SVM to compute probabilities but the predict function applied to an svm model object returns values outside [0, 1]: Variable Data looks like: Present X02 X03 X05 X06 X07 X13 X14 X15 X18 1 0 1634 48 2245.469 -1122.0750 3367.544 11105.013 2017.306 40 23227 2 0 1402 40 2611.519 -811.2500 3422.769 10499.425 1800.475 40 13822 3 0 1379
2009 Jul 23
0
How to get w in SVR with e1071 package
> > Hi all, > > I need some help about how to calculate w in a SVR in package e1071. > > I have a regression y_i=f(x_i)+e > > where f(*x*)=(w,phi(x))+b > > then go on with the SVR calculation I know that w*=Sum_i=1^n [(á_i - > á*_i)K(x,x_i) ] where á_i and á*_i are the lagrangian multipliers of the > dual form. > > o.k but how I will get it in R? > >
2005 May 19
2
tune.svm in {e1071}
Dear All , 1- I'm trying to access the values of fitted(model) after model<- tune.svm( ) but seemingly it is not poosible. How can I access to values of fitted ? However ,it is possible only after model<- svm( ) 2- How can I access to the other values such as the number of Support Vectors , gamma, cost , nu , epsilon , after model<- tune.svm( ) ? these are not possible? I
2003 Dec 10
3
e1071:svm - default epsilon = 0.1 (NOT 0.5) (PR#5671)
In e1071 package/svm default epsilon value is set to 0.1 and not 0.5 as documentation says. R
2009 Aug 03
1
How to get w and b in SVR? (package e1071)
Dear R users, I'm running a SVR in package e1071 but I did not able to calculate the parameters w and b of the regression. I don't know how to do that and if it is possible to do it with this package. Someone have some idea. Any help would be much appreciated. Marlene [[alternative HTML version deleted]]
2010 Feb 23
1
e1071: Cannot predict probabilities
Dear list. I using the SVM-methods from the e1071, but I can't get the probabilities when predicting. Code: x <- matrix(rbinom(100, 10, 0.3), ncol=2) y <- apply(x, 1, sum) fit <- svm(y ~ x, method = "C-classification", kernel = "radial", probability = TRUE) predict(fit, x, probability=TRUE) Here predict doesn't containing any probabilities (not as attributes
2011 Feb 18
1
segfault during example(svm)
If do: > library("e1071") > example(svm) I get: svm> data(iris) svm> attach(iris) svm> ## classification mode svm> # default with factor response: svm> model <- svm(Species ~ ., data = iris) svm> # alternatively the traditional interface: svm> x <- subset(iris, select = -Species) svm> y <- Species svm> model <- svm(x, y) svm>
2006 Dec 08
1
please help me for svm plot question
I run the following code, all other is ok, but plot(m.svm,p5.new,As~Cur) is not ok Anyone know why? install.packages("e1071") library(e1071) library(MASS) p5 <- read.csv("http://www.public.iastate.edu/~aiminy/data/p_5_2.csv") p5.new<-subset(p5,select=-Ms) p5.new$Y<-factor(p5.new$Y) levels(p5.new$Y) <- list(Out=c(1), In=c(0)) attach(p5.new)
2013 Jan 08
0
bagging SVM Ensemble
Dear Sir, I got a problem with my program. I would like to classify my data using bagging support vector machine ensemble. I split my data into training data and test data. For a given data sets TR(X), K replicated training data sets are first randomly generated by bootstrapping technique with replacement. Next, Support Vector Mechine (SVM) is applied for each bootstrap data sets. Finally, the
2005 Apr 26
3
Error using e1071 svm: NA/NaN/Inf in foreign function call
Hello, As far I saw in archive mailing list, I am not the first person with this problem. Anyway I was not able to pass this error once the information I got from the archive it is not very conclusive for this case. I have used linear, radial and sigmoid kernels for the same data in the same conditions and everything is ok. This problem just happens with the polynomial kernel. I send the
2006 Dec 07
1
svm plot question
I run the following code, all other is ok, but plot(m.svm,p5.new,As~Cur) is not ok Anyone know why? install.packages("e1071") library(e1071) library(MASS) p5 <- read.csv("http://www.public.iastate.edu/~aiminy/data/p_5_2.csv") p5.new<-subset(p5,select=-Ms) p5.new$Y<-factor(p5.new$Y) levels(p5.new$Y) <- list(Out=c(1), In=c(0)) attach(p5.new)
2004 Dec 21
2
Rgui.exe - Error while tuning svm
Hello, if I try to tune my svm with the code: Tune <- tune.svm(Data.Train, Class.Train, type="C-classification", kernel="radial", gamma = 2^(-1:1), cost = 2^(2:4)) i get a windows Messagebox with a error in the application "Rgui.exe" and the message: "Die Anweisung in 0x6c48174d verweist auf Speicher 0x00000000. Der Vorgang "read" konnte nicht auf
2012 Aug 07
1
Interpreting predictions of svm
Hi, I have some difficulties in interpreting the prediction of a svm model using the package e1071. y1 is the variable I want to predict. It is of type factor and has got two levels: "< 50%" and "> 50%". z is the dataset. > model <- svm(y1 ~ ., data = z,type="C-classification", cross=10) > model Call: svm(formula = y1 ~ ., data = z, type =