"in non linear modelling finding appropriate starting values is something like an art"... (maybe from somewhere in Crawley , 2007) Here a colleague and I just want to compare different response models to a null model. This has worked OK for almost all the other data sets except that one (dumped below). Whatever our trials and algorithms, even subsetting data (to check if some singular point was the cause of the mess), we do not reach convergence... or screw up with singular gradients (?) etc... eg: nls(pourcma~SSlogis(transat, Asym, xmid, scal), start=c(Asym=30, xmid=0.07, scal=0.02),data=bdd, weights=sqrt(nbfeces),trace=T,alg="plinear") As anyone a hint about an alternate approach to fit a model ? Or an idea to get evidence that such model cannot be fitted to the data.... bdd <- structure(list(transat = c(0.0697, 0.13079, 0.314265, 0.241613, 0.039319, 0, 0, 0, 0, 0, 0.0805, 0.41, 0.30585, 0.27465, 0.06085, 0.09114, 0.05766, 0.036983, 0.093186, 0.046624, 0, 0, 0, 0, 0.000616, 0, 0.0025, 0.0325, 0.03125, 0.04599, 0.38398, 0.524505, 0.450337, 0.061831, 0.133926, 0.091806, 0.00928, 0.25114, 0.3074, 0.431056, 0.026158), transma = c(0.04141, 0.01599, 0.101803, 0.002378, 0.039319, 0.00472459016393443, 0.0031016393442623, 0.000178524590163934, 0.00255704918032787, 0.000346229508196721, 0.0665, 0.012, 0.0553, 0.0045, 0.0056, 0.00155, 0.00124, 0.011966, 0.001736, 0.004712, 3.62903225806452e-05, 9.79838709677419e-05, 2.20161290322581e-05, 0.00462, 0.0100644444444444, 0.00213111111111111, 0.046, 0.005, 0.01195, 0.07154, 0.08468, 0.141182, 0.086578, 0.027959, 0.003159, 0.003081, 0.13862, 0.00754, 0.078648, 0.068324, 0.025288), nbfeces = c(22L, 26L, 43L, 30L, 35L, 25L, 21L, 36L, 34L, 37L, 23L, 32L, 40L, 35L, 30L, 16L, 25L, 37L, 37L, 34L, 31L, 35L, 41L, 31L, 34L, 39L, 5L, 14L, 31L, 13L, 21L, 34L, 32L, 36L, 36L, 40L, 31L, 35L, 39L, 29L, 32L), pourcma = c(50, 34.6153846153846, 27.9069767441860, 43.3333333333333, 65.7142857142857, 32, 28.5714285714286, 22.2222222222222, 50, 10.8108108108108, 26.0869565217391, 40.625, 12.5, 22.8571428571429, 43.3333333333333, 6.25, 4, 10.8108108108108, 16.2162162162162, 23.5294117647059, 25.8064516129032, 45.7142857142857, 39.0243902439024, 25.8064516129032, 41.6666666666667, 27.5, 20, 14.2857142857143, 22.5806451612903, 15.3846153846154, 38.0952380952381, 17.6470588235294, 78.125, 61.1111111111111, 25, 37.5, 22.5806451612903, 40, 17.9487179487179, 41.3793103448276, 50), pourcat = c(22.7272727272727, 30.7692307692308, 41.8604651162791, 56.6666666666667, 5.71428571428571, 0, 0, 0, 0, 0, 30.4347826086957, 15.625, 45, 74.2857142857143, 13.3333333333333, 50, 12, 18.9189189189189, 27.0270270270270, 20.5882352941176, 0, 0, 0, 0, 0, 5, 40, 0, 0, 7.69230769230769, 9.52380952380952, 38.2352941176471, 59.375, 5.55555555555556, 41.6666666666667, 42.5, 9.67741935483871, 14.2857142857143, 51.2820512820513, 79.3103448275862, 6.25)), .Names = c("transat", "transma", "nbfeces", "pourcma", "pourcat"), class = "data.frame", row.names = c(NA, -41L))
Based on a simple scatterplot of pourcma vs transat, a 4 parameter logistic looks like wild overfitting, and that may be the source of your problems. Given the huge scatter, a straight line is about as much as would seem sensible. I think this falls into the "Why ever would you want to do such a thing?" category. -- Bert Bert Gunter Genentech Nonclinical Biostatistics 650-467-7374 -----Original Message----- From: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org] On Behalf Of Patrick Giraudoux Sent: Friday, March 27, 2009 12:39 PM To: r-help at stat.math.ethz.ch Cc: Francis Raoul Subject: [R] nls, convergence and starting values "in non linear modelling finding appropriate starting values is something like an art"... (maybe from somewhere in Crawley , 2007) Here a colleague and I just want to compare different response models to a null model. This has worked OK for almost all the other data sets except that one (dumped below). Whatever our trials and algorithms, even subsetting data (to check if some singular point was the cause of the mess), we do not reach convergence... or screw up with singular gradients (?) etc... eg: nls(pourcma~SSlogis(transat, Asym, xmid, scal), start=c(Asym=30, xmid=0.07, scal=0.02),data=bdd, weights=sqrt(nbfeces),trace=T,alg="plinear") As anyone a hint about an alternate approach to fit a model ? Or an idea to get evidence that such model cannot be fitted to the data.... bdd <- structure(list(transat = c(0.0697, 0.13079, 0.314265, 0.241613, 0.039319, 0, 0, 0, 0, 0, 0.0805, 0.41, 0.30585, 0.27465, 0.06085, 0.09114, 0.05766, 0.036983, 0.093186, 0.046624, 0, 0, 0, 0, 0.000616, 0, 0.0025, 0.0325, 0.03125, 0.04599, 0.38398, 0.524505, 0.450337, 0.061831, 0.133926, 0.091806, 0.00928, 0.25114, 0.3074, 0.431056, 0.026158), transma = c(0.04141, 0.01599, 0.101803, 0.002378, 0.039319, 0.00472459016393443, 0.0031016393442623, 0.000178524590163934, 0.00255704918032787, 0.000346229508196721, 0.0665, 0.012, 0.0553, 0.0045, 0.0056, 0.00155, 0.00124, 0.011966, 0.001736, 0.004712, 3.62903225806452e-05, 9.79838709677419e-05, 2.20161290322581e-05, 0.00462, 0.0100644444444444, 0.00213111111111111, 0.046, 0.005, 0.01195, 0.07154, 0.08468, 0.141182, 0.086578, 0.027959, 0.003159, 0.003081, 0.13862, 0.00754, 0.078648, 0.068324, 0.025288), nbfeces = c(22L, 26L, 43L, 30L, 35L, 25L, 21L, 36L, 34L, 37L, 23L, 32L, 40L, 35L, 30L, 16L, 25L, 37L, 37L, 34L, 31L, 35L, 41L, 31L, 34L, 39L, 5L, 14L, 31L, 13L, 21L, 34L, 32L, 36L, 36L, 40L, 31L, 35L, 39L, 29L, 32L), pourcma = c(50, 34.6153846153846, 27.9069767441860, 43.3333333333333, 65.7142857142857, 32, 28.5714285714286, 22.2222222222222, 50, 10.8108108108108, 26.0869565217391, 40.625, 12.5, 22.8571428571429, 43.3333333333333, 6.25, 4, 10.8108108108108, 16.2162162162162, 23.5294117647059, 25.8064516129032, 45.7142857142857, 39.0243902439024, 25.8064516129032, 41.6666666666667, 27.5, 20, 14.2857142857143, 22.5806451612903, 15.3846153846154, 38.0952380952381, 17.6470588235294, 78.125, 61.1111111111111, 25, 37.5, 22.5806451612903, 40, 17.9487179487179, 41.3793103448276, 50), pourcat = c(22.7272727272727, 30.7692307692308, 41.8604651162791, 56.6666666666667, 5.71428571428571, 0, 0, 0, 0, 0, 30.4347826086957, 15.625, 45, 74.2857142857143, 13.3333333333333, 50, 12, 18.9189189189189, 27.0270270270270, 20.5882352941176, 0, 0, 0, 0, 0, 5, 40, 0, 0, 7.69230769230769, 9.52380952380952, 38.2352941176471, 59.375, 5.55555555555556, 41.6666666666667, 42.5, 9.67741935483871, 14.2857142857143, 51.2820512820513, 79.3103448275862, 6.25)), .Names = c("transat", "transma", "nbfeces", "pourcma", "pourcat"), class = "data.frame", row.names = c(NA, -41L)) ______________________________________________ R-help at r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.
Bert Gunter a ?crit :> Based on a simple scatterplot of pourcma vs transat, a 4 parameter logistic > looks like wild overfitting, and that may be the source of your problems. > Given the huge scatter, a straight line is about as much as would seem > sensible. I think this falls into the "Why ever would you want to do such a > thing?" category. > > -- Bert >Right, well, the general idea was just to show that the "straight line" was the best model indeed (in the other data sets, with model comparison, the logistic one was clearly shown to be the best... ). Can the fact that convergence cannot be obtained be an acceptable and sufficient reason to select the null model (the straight line) ? Patrick
Hi Patrick, there exist specialized functionality in R that offer both automated calculation of starting values and relatively robust optimization, which can be used with success in many common cases of nonlinear regression, also for your data: library(drc) # on CRAN ## Fitting 3-parameter logistic model ## (slightly different parameterization from SSlogis()) bdd.m1 <- drm(pourcma~transat, weights=sqrt(nbfeces), data=bdd, fct=L.3()) plot(bdd.m1, broken=TRUE, conLevel=0.0001) summary(bdd.m1) Of course, standard errors are huge as the data do not really support this model (as already pointed out by other replies to this post). Christian