Jessica L Hite/hitejl/O/VCU
2009-Feb-23 15:24 UTC
[R] Follow-up to Reply: Overdispersion with binomial distribution
THANKS so very much for your help (previous and future!). I have a two follow-up questions. 1) You say that dispersion = 1 by definition ....dispersion changes from 1 to 13.5 when I go from binomial to quasibinomial....does this suggest that I should use the binomial? i.e., is the dispersion factor more important that the 2) Is there a cutoff for too much overdispersion - mine seems to be huge......Residual deviance: 1580.1 on 123 degrees of freedom I do have some outliers - but they are legitimate (i.e., not typos)..... I included my data below....if it helps summary(glm.D93)$dispersion ## 1 (by definition) Call: glm(formula = y ~ Pred1, family = "binomial") Deviance Residuals: Min 1Q Median 3Q Max -9.940 -2.778 -0.710 2.130 10.479 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.63942 0.07205 22.753 < 2e-16 *** Pred1F -0.65228 0.11781 -5.537 3.08e-08 *** Pred1O -3.03239 0.12782 -23.724 < 2e-16 *** Pred1SN -3.60714 0.11057 -32.623 < 2e-16 *** Pred1W -1.22131 0.10734 -11.378 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 3506.7 on 127 degrees of freedom Residual deviance: 1580.1 on 123 degrees of freedom (1 observation deleted due to missingness) AIC: 1863.1 Number of Fisher Scoring iterations: 5> glm1<-glm(y~Pred1,"quasibinomial") > summary(glm1)Call: glm(formula = y ~ Pred1, family = "quasibinomial") Deviance Residuals: Min 1Q Median 3Q Max -9.940 -2.778 -0.710 2.130 10.479 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.6394 0.2646 6.197 7.96e-09 *** Pred1F -0.6523 0.4326 -1.508 0.13415 Pred1O -3.0324 0.4693 -6.461 2.19e-09 *** Pred1SN -3.6071 0.4060 -8.885 6.51e-15 *** Pred1W -1.2213 0.3941 -3.099 0.00241 ** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for quasibinomial family taken to be 13.48239) Null deviance: 3506.7 on 127 degrees of freedom Residual deviance: 1580.1 on 123 degrees of freedom (1 observation deleted due to missingness) AIC: NA Number of Fisher Scoring iterations: 5 DATA Pred1 PercentSurvival O 0.181818182 O 0 O 0 O 0 O 0 F 0.766666667 F 0.967741935 F 0.8 F 0.966666667 F 0.833333333 F 0.775 F 0.641025641 F 0.272727273 F 0.606060606 F 0.621621622 F 0.574468085 F 0.918918919 F 0.854166667 F 0.684210526 A 0.438596491 A 0.8 A 0.125 A 0.936507937 A 0.911764706 A 0.75 A 0 A 0.64 A 0.740740741 A 0.703703704 A 0.962962963 A 0.911111111 A 0.97260274 A 0.842105263 A 0.795454545 A 0.970588235 A 0.755555556 A 0.947368421 A 1 A 0.947368421 A 0.785714286 A 0.782178218 A 1 A 0.6 A 0.875 A 0.625 A 0.666666667 A 1 A 1 A 0.611111111 A 0.916666667 A 0.625 A 0.97826087 A 0.975 A 0.933333333 A 1 A 1 A 0.930232558 A 0.810810811 O 0 O 0 O 1 O 0 SN 0 SN 0 SN 0.696969697 SN 0 SN 0.533333333 SN 0 SN 0.027777778 SN 0.6 SN 0.052631579 SN 0 SN 0 SN 0 SN 0.619047619 SN 0 SN 0 SN 0 SN 0.08 SN 0 SN 0.090909091 SN 0 SN 0.5 SN 0 SN 0.78125 SN 0 SN 0 SN 0 SN 0 SN 0.542857143 SN 0 SN 0 SN 0 SN 0 SN 0.4 SN 0 SN 0 SN 0.433333333 O 0.655172414 O 0.238095238 O 0 O 0.409090909 O 0 O 0 O 0.090909091 O 0.310344828 O 0 O 0 O 0 O 0.783783784 W 0.928571429 W 0 W 0.651162791 W 0.3125 W 0.871794872 W 0.511627907 W 0.566666667 W 0.756756757 W 0 W 0.666666667 W 0.55 W 0.826086957 W 0.8 W 0.682926829 W 0.586206897 W 1 W 0.75 W 0.5625 [[alternative HTML version deleted]]
Michael Dewey
2009-Feb-24 18:15 UTC
[R] Follow-up to Reply: Overdispersion with binomial distribution
At 15:24 23/02/2009, Jessica L Hite/hitejl/O/VCU wrote:>THANKS so very much for your help (previous and future!). I have a two >follow-up questions. > >1) You say that dispersion = 1 by definition ....dispersion changes from 1 >to 13.5 when I go from binomial to quasibinomial....does this suggest that >I should use the binomial? i.e., is the dispersion factor more important >that the > >2) Is there a cutoff for too much overdispersion - mine seems to be >huge......Residual deviance: 1580.1 on 123 degrees of freedom >I do have some outliers - but they are legitimate (i.e., not typos)..... > >I included my data below....if it helpsIn your model you have y and Pred1 but in your dataset you have Pred1 and PercentSurvival so that is not the model you fitted. If you fitted PercentSurvival ~ Pred1 did you not get any warning?> summary(glm.D93)$dispersion ## 1 (by definition) > >Call: >glm(formula = y ~ Pred1, family = "binomial") > >Deviance Residuals: > Min 1Q Median 3Q Max >-9.940 -2.778 -0.710 2.130 10.479 > >Coefficients: > Estimate Std. Error z value Pr(>|z|) >(Intercept) 1.63942 0.07205 22.753 < 2e-16 *** >Pred1F -0.65228 0.11781 -5.537 3.08e-08 *** >Pred1O -3.03239 0.12782 -23.724 < 2e-16 *** >Pred1SN -3.60714 0.11057 -32.623 < 2e-16 *** >Pred1W -1.22131 0.10734 -11.378 < 2e-16 *** >--- >Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > >(Dispersion parameter for binomial family taken to be 1) > > Null deviance: 3506.7 on 127 degrees of freedom >Residual deviance: 1580.1 on 123 degrees of freedom > (1 observation deleted due to missingness) >AIC: 1863.1 > >Number of Fisher Scoring iterations: 5 > > > glm1<-glm(y~Pred1,"quasibinomial") > > summary(glm1) > >Call: >glm(formula = y ~ Pred1, family = "quasibinomial") > >Deviance Residuals: > Min 1Q Median 3Q Max >-9.940 -2.778 -0.710 2.130 10.479 > >Coefficients: > Estimate Std. Error t value Pr(>|t|) >(Intercept) 1.6394 0.2646 6.197 7.96e-09 *** >Pred1F -0.6523 0.4326 -1.508 0.13415 >Pred1O -3.0324 0.4693 -6.461 2.19e-09 *** >Pred1SN -3.6071 0.4060 -8.885 6.51e-15 *** >Pred1W -1.2213 0.3941 -3.099 0.00241 ** >--- >Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > >(Dispersion parameter for quasibinomial family taken to be 13.48239) > > Null deviance: 3506.7 on 127 degrees of freedom >Residual deviance: 1580.1 on 123 degrees of freedom > (1 observation deleted due to missingness) >AIC: NA > >Number of Fisher Scoring iterations: 5 > > >DATA > > >Pred1 PercentSurvival >O 0.181818182 >O 0 >O 0 >O 0 >O 0 >F 0.766666667 >F 0.967741935 >F 0.8 >F 0.966666667 >F 0.833333333 >F 0.775 >F 0.641025641 >F 0.272727273 >F 0.606060606 >F 0.621621622 >F 0.574468085 >F 0.918918919 >F 0.854166667 >F 0.684210526 >A 0.438596491 >A 0.8 >A 0.125 >A 0.936507937 >A 0.911764706 >A 0.75 >A 0 >A 0.64 >A 0.740740741 >A 0.703703704 >A 0.962962963 >A 0.911111111 >A 0.97260274 >A 0.842105263 >A 0.795454545 >A 0.970588235 >A 0.755555556 >A 0.947368421 >A 1 >A 0.947368421 >A 0.785714286 >A 0.782178218 >A 1 >A 0.6 >A 0.875 >A 0.625 >A 0.666666667 >A 1 >A 1 >A 0.611111111 >A 0.916666667 >A 0.625 >A 0.97826087 >A 0.975 >A 0.933333333 >A 1 >A 1 >A 0.930232558 >A 0.810810811 >O 0 >O 0 >O 1 >O 0 >SN 0 >SN 0 >SN 0.696969697 >SN 0 >SN 0.533333333 >SN 0 >SN 0.027777778 >SN 0.6 >SN 0.052631579 >SN 0 >SN 0 >SN 0 >SN 0.619047619 >SN 0 >SN 0 >SN 0 >SN 0.08 >SN 0 >SN 0.090909091 >SN 0 >SN 0.5 >SN 0 >SN 0.78125 >SN 0 >SN 0 >SN 0 >SN 0 >SN 0.542857143 >SN 0 >SN 0 >SN 0 >SN 0 >SN 0.4 >SN 0 >SN 0 >SN 0.433333333 >O 0.655172414 >O 0.238095238 >O 0 >O 0.409090909 >O 0 >O 0 >O 0.090909091 >O 0.310344828 >O 0 >O 0 >O 0 >O 0.783783784 >W 0.928571429 >W 0 >W 0.651162791 >W 0.3125 > >W 0.871794872 >W 0.511627907 >W 0.566666667 >W 0.756756757 >W 0 >W 0.666666667 >W 0.55 >W 0.826086957 >W 0.8 >W 0.682926829 >W 0.586206897 >W 1 >W 0.75 >W 0.5625 > > [[alternative HTML version deleted]]Michael Dewey http://www.aghmed.fsnet.co.uk