Dear list, I have two things I am struggling... # First set.seed(123) myD <- data.frame( Light = sample(LETTERS[1:2], 10, replace=T), Feed = sample(letters[1:5], 20, replace=T), value=rnorm(20) ) # Mean for Light myD$meanLight <- unlist( lapply( myD$Light, function(x) mean( myD$value[myD$Light == x]) ) ) # Mean for Feed myD$meanFeed <- unlist( lapply( myD$Feed, function(x) mean( myD$value[myD$Feed == x]) ) ) myD # I would like to get a new Var "meanLightFeed" # holding the "Group-Mean" for each combination (eg. A:a = 0.821581) # by(myD$value, list(myD$Light, myD$Feed), mean)[[1]] # Second set.seed(321) myD <- data.frame( Light = sample(LETTERS[1:2], 10, replace=T), value=rnorm(20) ) w1 <- tapply(myD$value, myD$Light, mean) w1 # > w1 # A B # 0.4753412 -0.2108387 myfun <- function(x) (myD$value > w1[x] & myD$value < w1[x] * 1.5) I would like to have a TRUE/FALSE-Variable depend on the constraint in "myfun" for each level in "Light"... As always - thanks for any help!! Patrick
Have a look at cast() form the reshape package. library(reshape) set.seed(123) myD <- data.frame( Light = sample(LETTERS[1:2], 10, replace=T), Feed = sample(letters[1:5], 20, replace=T), value=rnorm(20) ) cast(myD, Light ~ ., fun = mean) cast(myD, Feed ~ ., fun = mean) cast(myD, Light + Feed ~ ., fun = mean) cast(myD, Light ~ Feed, fun = mean) HTH, Thierry ------------------------------------------------------------------------ ---- ir. Thierry Onkelinx Instituut voor natuur- en bosonderzoek / Research Institute for Nature and Forest Cel biometrie, methodologie en kwaliteitszorg / Section biometrics, methodology and quality assurance Gaverstraat 4 9500 Geraardsbergen Belgium tel. + 32 54/436 185 Thierry.Onkelinx at inbo.be www.inbo.be To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of. ~ Sir Ronald Aylmer Fisher The plural of anecdote is not data. ~ Roger Brinner The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data. ~ John Tukey -----Oorspronkelijk bericht----- Van: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org] Namens Patrick Hausmann Verzonden: dinsdag 3 februari 2009 16:12 Aan: r-help at r-project.org Onderwerp: [R] lapply and aggregate function Dear list, I have two things I am struggling... # First set.seed(123) myD <- data.frame( Light = sample(LETTERS[1:2], 10, replace=T), Feed = sample(letters[1:5], 20, replace=T), value=rnorm(20) ) # Mean for Light myD$meanLight <- unlist( lapply( myD$Light, function(x) mean( myD$value[myD$Light == x]) ) ) # Mean for Feed myD$meanFeed <- unlist( lapply( myD$Feed, function(x) mean( myD$value[myD$Feed == x]) ) ) myD # I would like to get a new Var "meanLightFeed" # holding the "Group-Mean" for each combination (eg. A:a = 0.821581) # by(myD$value, list(myD$Light, myD$Feed), mean)[[1]] # Second set.seed(321) myD <- data.frame( Light = sample(LETTERS[1:2], 10, replace=T), value=rnorm(20) ) w1 <- tapply(myD$value, myD$Light, mean) w1 # > w1 # A B # 0.4753412 -0.2108387 myfun <- function(x) (myD$value > w1[x] & myD$value < w1[x] * 1.5) I would like to have a TRUE/FALSE-Variable depend on the constraint in "myfun" for each level in "Light"... As always - thanks for any help!! Patrick ______________________________________________ R-help at r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. Dit bericht en eventuele bijlagen geven enkel de visie van de schrijver weer en binden het INBO onder geen enkel beding, zolang dit bericht niet bevestigd is door een geldig ondertekend document. The views expressed in this message and any annex are purely those of the writer and may not be regarded as stating an official position of INBO, as long as the message is not confirmed by a duly signed document.
You might want to look at the doBy package For (1), you could use summaryBy(value~Light+Feed,data=myD, FUN=mean) and for (2), the transformBy function would be helpful David Freedman Patrick Hausmann wrote:> > Dear list, > > I have two things I am struggling... > > # First > set.seed(123) > myD <- data.frame( Light = sample(LETTERS[1:2], 10, replace=T), > Feed = sample(letters[1:5], 20, replace=T), > value=rnorm(20) ) > > # Mean for Light > myD$meanLight <- unlist( lapply( myD$Light, > function(x) mean( myD$value[myD$Light == x]) ) ) > # Mean for Feed > myD$meanFeed <- unlist( lapply( myD$Feed, > function(x) mean( myD$value[myD$Feed == x]) ) ) > myD > > # I would like to get a new Var "meanLightFeed" > # holding the "Group-Mean" for each combination (eg. A:a = 0.821581) > # by(myD$value, list(myD$Light, myD$Feed), mean)[[1]] > > > # Second > set.seed(321) > myD <- data.frame( Light = sample(LETTERS[1:2], 10, replace=T), > value=rnorm(20) ) > > w1 <- tapply(myD$value, myD$Light, mean) > w1 > # > w1 > # A B > # 0.4753412 -0.2108387 > > myfun <- function(x) (myD$value > w1[x] & myD$value < w1[x] * 1.5) > > I would like to have a TRUE/FALSE-Variable depend on the constraint in > "myfun" for each level in "Light"... > > As always - thanks for any help!! > Patrick > > ______________________________________________ > R-help at r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > >-- View this message in context: http://www.nabble.com/lapply-and-aggregate-function-tp21811834p21812057.html Sent from the R help mailing list archive at Nabble.com.
> # Second > set.seed(321) > myD <- data.frame( Light = sample(LETTERS[1:2], 10, replace=T), > value=rnorm(20) ) > > w1 <- tapply(myD$value, myD$Light, mean) > w1 > # > w1 > # A B > # 0.4753412 -0.2108387 > > myfun <- function(x) (myD$value > w1[x] & myD$value < w1[x] * 1.5) > > I would like to have a TRUE/FALSE-Variable depend on the constraint in > "myfun" for each level in "Light"...You could use ddply from the plyr package for this: install.packages("plyr") library(plyr) ddply(myD, .(Light), transform, constraint = value > mean(value) & value < mean(value) * 1.5) This applies the transform function to each subset defined by Light, and then joins all the pieces back together in a single data frame. You can use a similar approach for the other parts: myD <- ddply(myD, .(Light), transform, meanLight = mean(value)) myD <- ddply(myD, .(Feed), transform, meanFeed = mean(value)) myD <- ddply(myD, .(Feed, Light), transform, meanFeedLight = mean(value)) Hadley -- http://had.co.nz/