Hello, I can`t figure out how can increase the velocity of the fitting data by nls. I have a long data .csv I want to read evry time the first colunm to the other colunm and analisy with thata tools setwd("C:/dati") a<-read.table("Normalizzazione.csv", sep=",", dec=".", header=F) for (i in 1:dim(a[[2]]]) { #preparazione dati da analizzare singolarmente P1<-data.frame(Time=a[,2],RFU=a[,i+2]) P1<-data.frame(Time=a[,1],RFU=a[,2]) nlmod2 <- nls(RFU ~ A + (B+c*Time)/(1+exp(k*(e-Time))), P1, start = list(A = 100, c = 1, B = 10, k =2, e = 10),control = nls.control(maxiter = 100000),trace = TRUE) print (summary(nlmod2)) coeff<-coefficients(nlmod2) c<-coeff["c"] A<-coeff["A"] B<-coeff["B"] e<-coeff["e"] k<-coeff["k"] summary(nlmod2) plot(P1) lines(P1[,1],nlmod2,lwd=2,col=2) lag1 <- e-(2/k) print(lag1) abline(v=lag1,col=4) print("nlmod2") { pdf(file= "Lag_estimation.pdf" ) plot(P1[,1],predict(nlmod2),xlab='Time',ylab='ThT normalizate',main="Lag estimetion",type='l', col=1) lines(P1, col=8) abline(v=lag1,col=4) lines(P1[,1],nlmod2,lwd=2,col=2) } The loops don't` function. the program stop after the first cycle...gradienrt is not good... what I want is to skyp these set of data and give me in the end one table with all data with lag1 value.. I appreciate any kind of help Have nice day M
Hello, I can`t figure out how can increase the velocity of the fitting data by nls. I have a long data .csv I want to read evry time the first colunm to the other colunm and analisy with thata tools setwd("C:/dati") a<-read.table("Normalizzazione.csv", sep=",", dec=".", header=F) for (i in 1:dim(a[[2]]]) { #preparazione dati da analizzare singolarmente P1<-data.frame(Time=a[,2],RFU=a[,i+2]) P1<-data.frame(Time=a[,1],RFU=a[,2]) nlmod2 <- nls(RFU ~ A + (B+c*Time)/(1+exp(k*(e-Time))), P1, start = list(A = 100, c = 1, B = 10, k =2, e = 10),control = nls.control(maxiter = 100000),trace = TRUE) print (summary(nlmod2)) coeff<-coefficients(nlmod2) c<-coeff["c"] A<-coeff["A"] B<-coeff["B"] e<-coeff["e"] k<-coeff["k"] summary(nlmod2) plot(P1) lines(P1[,1],nlmod2,lwd=2,col=2) lag1 <- e-(2/k) print(lag1) abline(v=lag1,col=4) print("nlmod2") { pdf(file= "Lag_estimation.pdf" ) plot(P1[,1],predict(nlmod2),xlab='Time',ylab='ThT normalizate',main="Lag estimetion",type='l', col=1) lines(P1, col=8) abline(v=lag1,col=4) lines(P1[,1],nlmod2,lwd=2,col=2) } The loops don't` function. the program stop after the first cycle...gradienrt is not good... what I want is to skyp these set of data and give me in the end one table with all data with lag1 value.. I appreciate any kind of help Have nice day M
Hello, I can`t figure out how can increase the velocity of the fitting data by nls. I have a long data .csv I want to read evry time the first colunm to the other colunm and analisy with thata tools setwd("C:/dati") a<-read.table("Normalizzazione.csv", sep=",", dec=".", header=F) for (i in 1:dim(a[[2]]]) { #preparazione dati da analizzare singolarmente P1<-data.frame(Time=a[,2],RFU=a[,i+2]) P1<-data.frame(Time=a[,1],RFU=a[,2]) nlmod2 <- nls(RFU ~ A + (B+c*Time)/(1+exp(k*(e-Time))), P1, start = list(A = 100, c = 1, B = 10, k =2, e = 10),control = nls.control(maxiter = 100000),trace = TRUE) print (summary(nlmod2)) coeff<-coefficients(nlmod2) c<-coeff["c"] A<-coeff["A"] B<-coeff["B"] e<-coeff["e"] k<-coeff["k"] summary(nlmod2) plot(P1) lines(P1[,1],nlmod2,lwd=2,col=2) lag1 <- e-(2/k) print(lag1) abline(v=lag1,col=4) print("nlmod2") { pdf(file= "Lag_estimation.pdf" ) plot(P1[,1],predict(nlmod2),xlab='Time',ylab='ThT normalizate',main="Lag estimetion",type='l', col=1) lines(P1, col=8) abline(v=lag1,col=4) lines(P1[,1],nlmod2,lwd=2,col=2) } The loops don't` function. the program stop after the first cycle...gradienrt is not good... what I want is to skyp these set of data and give me in the end one table with all data with lag1 value.. I appreciate any kind of help Have nice day M
Hello, I can`t figure out how can increase the velocity of the fitting data by nls. I have a long data .csv I want to read evry time the first colunm to the other colunm and analisy with thata tools setwd("C:/dati") a<-read.table("Normalizzazione.csv", sep=",", dec=".", header=F) for (i in 1:dim(a[[2]]]) { #preparazione dati da analizzare singolarmente P1<-data.frame(Time=a[,2],RFU=a[,i+2]) P1<-data.frame(Time=a[,1],RFU=a[,2]) nlmod2 <- nls(RFU ~ A + (B+c*Time)/(1+exp(k*(e-Time))), P1, start = list(A = 100, c = 1, B = 10, k =2, e = 10),control = nls.control(maxiter = 100000),trace = TRUE) print (summary(nlmod2)) coeff<-coefficients(nlmod2) c<-coeff["c"] A<-coeff["A"] B<-coeff["B"] e<-coeff["e"] k<-coeff["k"] summary(nlmod2) plot(P1) lines(P1[,1],nlmod2,lwd=2,col=2) lag1 <- e-(2/k) print(lag1) abline(v=lag1,col=4) print("nlmod2") { pdf(file= "Lag_estimation.pdf" ) plot(P1[,1],predict(nlmod2),xlab='Time',ylab='ThT normalizate',main="Lag estimetion",type='l', col=1) lines(P1, col=8) abline(v=lag1,col=4) lines(P1[,1],nlmod2,lwd=2,col=2) } The loops don't` function. the program stop after the first cycle...gradienrt is not good... what I want is to skyp these set of data and give me in the end one table with all data with lag1 value.. I appreciate any kind of help Have nice day M