Anna Radtke
2008-Jul-25 09:34 UTC
[R] glht after lmer with "$S4class-" and "missing model.matrix-" errors with DATA
maybe it's in the data? So here it comes.> sv.growthGrouped Data: length ~ meas | box_id meas spec comp water box_id sprouts leaves length long.sprout 1 1 Sv control moist 1 8.800000 37.80 211.2000 60.6 2 1 Sv xfull moist 2 7.000000 8.00 174.8000 62.8 3 1 Sv control moist 3 9.000000 42.00 255.2000 66.0 4 1 Sv root moist 4 7.800000 35.00 225.8000 78.2 5 1 Sv root moist 5 7.800000 31.40 182.6000 59.4 6 1 Sv shoot moist 6 8.800000 50.80 247.6000 53.4 7 1 Sv root moist 7 7.000000 26.20 169.2000 63.0 8 1 Sv xfull moist 8 4.600000 4.00 71.8000 35.8 9 1 Sv root moist 9 8.800000 40.00 246.8000 69.4 10 1 Sv shoot moist 10 8.000000 48.20 266.8000 67.6 11 1 Sv control moist 11 15.000000 71.80 380.2000 53.6 12 1 Sv shoot moist 12 10.400000 41.20 271.8000 58.6 13 1 Sv shoot moist 13 8.200000 44.00 243.8000 53.4 14 1 Sv xfull moist 14 6.200000 10.00 171.6000 67.2 15 1 Sv root moist 15 9.600000 42.20 187.6000 57.8 16 1 Sv xfull moist 16 6.200000 7.80 164.0000 63.6 17 1 Sv control moist 17 11.000000 53.40 262.4000 59.6 18 1 Sv control moist 18 8.800000 45.00 245.4000 63.8 19 1 Sv xfull moist 19 6.200000 7.40 161.0000 61.6 20 1 Sv shoot moist 20 9.400000 38.40 209.0000 74.8 21 1 Sv root awater-logged 21 8.600000 42.00 252.0000 75.2 22 1 Sv shoot awater-logged 22 7.800000 34.80 238.8000 80.8 23 1 Sv control awater-logged 23 9.750000 37.25 182.2500 55.5 24 1 Sv control awater-logged 24 8.200000 51.00 287.2000 77.8 25 1 Sv control awater-logged 25 8.500000 45.25 290.5000 85.0 26 1 Sv xfull awater-logged 26 8.800000 11.60 204.4000 58.8 27 1 Sv shoot awater-logged 27 6.600000 22.00 138.6000 68.6 28 1 Sv shoot awater-logged 28 10.400000 34.40 225.2000 70.0 29 1 Sv root awater-logged 29 5.000000 22.40 113.4000 60.2 30 1 Sv control awater-logged 30 7.400000 38.00 220.4000 73.8 31 1 Sv xfull awater-logged 31 7.600000 5.00 143.8000 54.8 32 1 Sv xfull awater-logged 32 3.600000 10.20 124.6000 74.2 33 1 Sv xfull awater-logged 33 7.200000 6.00 162.6000 60.8 34 1 Sv shoot awater-logged 34 7.400000 26.40 210.4000 86.2 35 1 Sv root awater-logged 35 8.600000 34.80 257.6000 81.6 36 1 Sv root awater-logged 36 9.400000 31.00 196.2000 70.4 37 1 Sv root awater-logged 37 6.800000 34.20 204.4000 85.4 38 1 Sv xfull awater-logged 38 7.200000 6.60 151.6000 66.0 39 1 Sv shoot awater-logged 39 7.600000 39.60 227.4000 63.8 40 1 Sv control awater-logged 40 8.400000 51.60 257.6000 78.6 41 2 Sv control moist 1 5.400000 100.80 1104.4000 392.6 42 2 Sv xfull moist 2 5.200000 33.60 404.4000 182.4 43 2 Sv control moist 3 6.400000 108.60 1060.0000 364.2 44 2 Sv root moist 4 5.000000 91.40 1017.6000 394.4 45 2 Sv root moist 5 5.200000 78.40 772.4000 312.4 46 2 Sv shoot moist 6 5.600000 77.60 775.6000 318.0 47 2 Sv root moist 7 4.600000 73.20 730.2000 314.4 48 2 Sv xfull moist 8 3.600000 17.40 238.8000 136.6 49 2 Sv root moist 9 4.600000 94.20 980.4000 366.8 50 2 Sv shoot moist 10 7.750000 96.50 876.2500 327.0 51 2 Sv control moist 11 10.000000 127.20 1209.6000 327.2 52 2 Sv shoot moist 12 7.400000 83.40 818.6000 314.0 53 2 Sv shoot moist 13 6.800000 83.80 812.4000 283.6 54 2 Sv xfull moist 14 3.800000 29.80 325.0000 183.4 55 2 Sv root moist 15 4.600000 72.20 734.8000 378.0 56 2 Sv xfull moist 16 2.600000 24.40 282.0000 189.0 57 2 Sv control moist 17 8.000000 124.60 1246.8000 371.4 58 2 Sv control moist 18 4.400000 84.40 1061.4000 377.2 59 2 Sv xfull moist 19 4.200000 29.00 353.8000 193.4 60 2 Sv shoot moist 20 5.600000 74.40 743.2000 378.8 61 2 Sv root awater-logged 21 6.600000 93.60 912.4000 351.6 62 2 Sv shoot awater-logged 22 4.000000 62.00 714.8000 401.0 63 2 Sv control awater-logged 23 5.000000 82.00 881.6000 323.2 64 2 Sv control awater-logged 24 5.600000 110.80 1264.8000 424.8 65 2 Sv control awater-logged 25 5.800000 89.60 930.8000 346.2 66 2 Sv xfull awater-logged 26 4.000000 39.60 455.2000 268.8 67 2 Sv shoot awater-logged 27 3.400000 55.40 614.6000 384.2 68 2 Sv shoot awater-logged 28 5.400000 71.00 698.0000 320.6 69 2 Sv root awater-logged 29 3.000000 66.40 757.4000 427.8 70 2 Sv control awater-logged 30 4.800000 83.00 990.4000 413.4 71 2 Sv xfull awater-logged 31 3.200000 23.20 300.6000 238.8 72 2 Sv xfull awater-logged 32 1.400000 24.60 210.8000 192.8 73 2 Sv xfull awater-logged 33 3.200000 28.60 344.8000 185.8 74 2 Sv shoot awater-logged 34 3.600000 59.60 631.0000 402.0 75 2 Sv root awater-logged 35 5.200000 86.40 826.4000 289.8 76 2 Sv root awater-logged 36 7.200000 87.40 918.8000 351.0 77 2 Sv root awater-logged 37 4.200000 84.80 840.0000 422.0 78 2 Sv xfull awater-logged 38 2.400000 29.80 355.6000 239.6 79 2 Sv shoot awater-logged 39 6.200000 71.20 683.8000 282.0 80 2 Sv control awater-logged 40 5.400000 106.40 1083.6000 388.6 81 3 Sv control moist 1 5.200000 149.60 1863.8000 682.0 82 3 Sv xfull moist 2 2.500000 42.25 427.5000 344.5 83 3 Sv control moist 3 4.200000 134.00 1496.2000 572.0 84 3 Sv root moist 4 3.600000 121.00 1488.8000 706.8 85 3 Sv root moist 5 4.000000 115.00 1340.2000 587.2 86 3 Sv shoot moist 6 2.600000 80.00 976.0000 613.2 87 3 Sv root moist 7 3.600000 94.40 1187.2000 555.0 88 3 Sv xfull moist 8 3.500000 41.75 367.0000 195.5 89 3 Sv root moist 9 3.600000 120.20 1450.4000 630.6 90 3 Sv shoot moist 10 2.600000 85.00 1007.2000 586.0 91 3 Sv control moist 11 4.000000 118.80 1386.0000 626.6 92 3 Sv shoot moist 12 2.200000 72.40 942.6000 578.4 93 3 Sv shoot moist 13 2.200000 80.60 957.6000 606.0 94 3 Sv xfull moist 14 1.250000 27.00 308.0000 297.0 95 3 Sv root moist 15 2.600000 85.80 1080.2000 676.8 96 3 Sv xfull moist 16 1.666667 41.00 475.6667 374.0 97 3 Sv control moist 17 4.400000 148.00 1795.6000 681.8 98 3 Sv control moist 18 3.400000 107.80 1484.4000 653.6 99 3 Sv xfull moist 19 2.400000 49.80 450.6000 326.2 100 3 Sv shoot moist 20 2.800000 73.60 896.2000 663.8 101 3 Sv root awater-logged 21 4.800000 119.00 1431.6000 585.0 102 3 Sv shoot awater-logged 22 1.800000 61.20 896.8000 654.0 103 3 Sv control awater-logged 23 4.600000 123.80 1471.6000 552.0 104 3 Sv control awater-logged 24 5.000000 144.00 1906.6000 734.2 105 3 Sv control awater-logged 25 3.400000 107.80 1388.4000 639.0 106 3 Sv xfull awater-logged 26 1.800000 53.20 586.8000 439.4 107 3 Sv shoot awater-logged 27 1.800000 68.40 910.6000 704.4 108 3 Sv shoot awater-logged 28 3.400000 88.20 1092.0000 615.0 109 3 Sv root awater-logged 29 2.800000 101.20 1342.8000 740.4 110 3 Sv control awater-logged 30 4.000000 125.40 1556.6000 769.6 111 3 Sv xfull awater-logged 31 2.000000 52.20 534.8000 451.0 112 3 Sv xfull awater-logged 32 1.800000 40.40 428.6000 375.6 113 3 Sv xfull awater-logged 33 2.000000 41.20 420.6000 295.6 114 3 Sv shoot awater-logged 34 1.800000 74.60 978.8000 760.6 115 3 Sv root awater-logged 35 4.000000 110.80 1262.8000 494.4 116 3 Sv root awater-logged 36 6.400000 129.20 1518.8000 590.4 117 3 Sv root awater-logged 37 4.600000 124.60 1389.8000 746.0 118 3 Sv xfull awater-logged 38 2.000000 39.00 472.6000 398.4 119 3 Sv shoot awater-logged 39 1.600000 59.80 809.4000 576.4 120 3 Sv control awater-logged 40 4.400000 134.60 1622.6000 664.4 2008/7/25 Anna Radtke <annaradtke2309 at googlemail.com>:>> Hello everybody. > In my case, calculating multiple comparisons (Tukey) after lmer > produced the following two errors: > > > sv.mc <- glht(model.sv,linfct=mcp(comp="Tukey")) > Error in x$terms : $ operator not defined for this S4 class > Error in factor_contrasts(model) : > no 'model.matrix' method for 'model' found! > > What I have done before: > > > sv.growth <- groupedData(length~meas|box_id,outer=~comp,data=sv.growth) > > model.sv <- lmer(length~comp+(meas|box_id),data=sv.growth) > Warning message: > In .local(x, ..., value) : > Estimated variance-covariance for factor 'box_id' is singular > > summary(model.sv) > Linear mixed-effects model fit by REML > Formula: length ~ comp + (meas | box_id) > Data: sv.growth > AIC BIC logLik MLdeviance REMLdeviance > 1587 1606 -786.4 1605 1573 > Random effects: > Groups Name Variance Std.Dev. Corr > box_id (Intercept) 466698.1 683.153 > meas 230733.7 480.347 -1.000 > Residual 9138.3 95.595 > number of obs: 120, groups: box_id, 40 > Fixed effects: > Estimate Std. Error t value > (Intercept) 600.90 21.31 28.196 > comproot -124.84 30.14 -4.142 > compshoot -167.36 30.14 -5.553 > compxfull -375.13 30.14 -12.446 > Correlation of Fixed Effects: > (Intr) comprt cmpsht > comproot -0.707 > compshoot -0.707 0.500 > compxfull -0.707 0.500 0.500 > > Thanks for youR help in advance. > Anna-- Anna Radtke Hopfengarten 21 35043 Marburg Tel.: 0162-8211685
Apparently Analagous Threads
- Tukey post hoc comparison (glht?) after 3factorial mixed model (lmer)
- R-help Digest, Vol 92, Issue 31
- glht after lmer with "$S4class-" and "missing model.matrix-" errors
- Animal Morphology: Deriving Classification Equation with Linear Discriminat Analysis (lda)
- crossed random effects