Hi all, Two questions: 1. Is there a way to evaluate models from lmer() with a poisson distribution? I get the following error message: library(lme4) lmer(tot.fruit~infl.treat+def.treat+(1|initial.size),family=poisson)->model plot(fitted(model),resid(model)) Error: 'resid' is not implemented yet Are there any other options? 2. Why doesn't the function estimable() in gmodels work with lmer() using a poisson distribution? I know that my coefficients are right because it works fine if I run the model without poisson distribution. #CODE (with latest R version and package updates)# #Without Poisson distribution# library(lme4) library(gmodels) lmer(tot.fruit~infl.treat+def.treat+(1|initial.size))->model1 summary(model1) Linear mixed-effects model fit by REML Formula: tot.fruit ~ infl.treat + def.treat + (1 | initial.size) AIC BIC logLik MLdeviance REMLdeviance 2449 2471 -1218 2447 2437 Random effects: Groups Name Variance Std.Dev. initial.size (Intercept) 71.585 8.4608 Residual 49.856 7.0608 number of obs: 323, groups: initial.size, 292 Fixed effects: Estimate Std. Error t value (Intercept) 12.8846 1.3028 9.890 infl.treat1 -0.4738 1.1819 -0.401 def.treat2 -3.5522 1.6022 -2.217 def.treat3 -2.1757 1.6461 -1.322 def.treat4 -2.1613 1.7003 -1.271 Correlation of Fixed Effects: (Intr) infl.1 df.tr2 df.tr3 infl.treat1 -0.413 def.treat2 -0.616 0.013 def.treat3 -0.641 0.002 0.493 def.treat4 -0.638 0.028 0.469 0.524 #Coefficients# mean.infl.treat0=c(1,0,1/4,1/4,1/4) mean.infl.treat1=c(1,1,1/4,1/4,1/4) mean.def.treat1=c(1,1/2,0,0,0) mean.def.treat2=c(1,1/2,1,0,0) mean.def.treat3=c(1,1/2,0,1,0) mean.def.treat4=c(1,1/2,0,0,1) means=rbind(mean.infl.treat0,mean.infl.treat1,mean.def.treat1,mean.def.treat2,mean.def.treat3,mean.def.treat4) estimable(model1,means,sim.lmer=TRUE,n.sim=1000) Estimate Std. Error p value (1 0 0.25 0.25 0.25) 10.897825 0.8356260 0 (1 1 0.25 0.25 0.25) 10.421633 0.9364839 0 (1 0.5 0 0 0) 12.577408 1.2055979 0 (1 0.5 1 0 0) 9.097063 1.1769760 0 (1 0.5 0 1 0) 10.523485 1.2238635 0 (1 0.5 0 0 1) 10.440959 1.2031459 0 #With Poisson distribution# lmer(tot.fruit~infl.treat+def.treat+(1|initial.size),family=poisson)->model2 summary(model2) Generalized linear mixed model fit using Laplace Formula: tot.fruit ~ infl.treat + def.treat + (1 | initial.size) Family: poisson(log link) AIC BIC logLik deviance 1073 1096 -530.5 1061 Random effects: Groups Name Variance Std.Dev. initial.size (Intercept) 0.84201 0.91761 number of obs: 323, groups: initial.size, 292 Estimated scale (compare to 1 ) 1.130529 Fixed effects: Estimate Std. Error z value Pr(>|z|) (Intercept) 2.08865 0.10478 19.934 < 2e-16 *** infl.treat1 0.10615 0.09412 1.128 0.25941 def.treat2 -0.37354 0.11398 -3.277 0.00105 ** def.treat3 -0.18566 0.12679 -1.464 0.14310 def.treat4 -0.10624 0.13451 -0.790 0.42962 --- Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 Correlation of Fixed Effects: (Intr) infl.1 df.tr2 df.tr3 infl.treat1 -0.418 def.treat2 -0.554 0.016 def.treat3 -0.599 -0.001 0.467 def.treat4 -0.623 0.055 0.460 0.548 estimable(model2,lsmeans,sim.lmer=TRUE,n.sim=1000) Error in FUN(newX[, i], ...) : `param' has no names and does not match number of coefficients of model. Unable to construct coefficient vector #End of CODE# Any ideas as to why this is? It does say in the help of ?estimable that it should work for lmer objects. Thanks in advance for any help, Adriana Puentes -- Adriana Puentes (MSc.) PhD student Plant Ecology Evolutionary Biology Centre (EBC) Uppsala University Villav?gen 14 75236, Uppsala, Sweden Webpage: http://www.vaxtbio.uu.se/resfold/puentes.htm Work: (+46)18-471-2882 Mobile: (+46)(0)76-853-5861 Fax: (+46)18-553-419