Hello, I'm using a very large data set (n > 100,000 for 7 columns), for which I'm pretty happy dealing with pairwise-deleted correlations to populate my correlation table. E.g., a <- cor(cbind(col1, col2, col3),use="pairwise.complete.obs") ...however, I am interested in the number of cases used to compute each cell of the correlation table. I am unable to find such a function via google searches, so I wrote one of my own. This turns out to be highly inefficient (e.g., it takes much, MUCH longer than the correlations do). Any hints, regarding other functions to use or ways to maket his speedier, would be much appreciated! pairwise.n <- function(df=stop("Must provide data frame!")) { if (!is.data.frame(df)) { df <- as.data.frame(df) } colNum <- ncol(df) result <- matrix(data=NA,nrow=colNum,ncol=ncolNum,dimnames=list(colnames(df),colnames(df))) for(i in 1:colNum) { for (j in i:colNum) { result[i,j] <- length(df[!is.na(df[i])&!is.na(df[j])])/colNum } } result } -- Adam D. I. Kramer University of Oregon
Try this: # mat is test matrix mat <- matrix(1:25, 5) mat[2,2] <- mat[3,4] <- NA crossprod(!is.na(mat)) On 8/7/06, Adam D. I. Kramer <adik at ilovebacon.org> wrote:> Hello, > > I'm using a very large data set (n > 100,000 for 7 columns), for which I'm > pretty happy dealing with pairwise-deleted correlations to populate my > correlation table. E.g., > > a <- cor(cbind(col1, col2, col3),use="pairwise.complete.obs") > > ...however, I am interested in the number of cases used to compute each > cell of the correlation table. I am unable to find such a function via > google searches, so I wrote one of my own. This turns out to be highly > inefficient (e.g., it takes much, MUCH longer than the correlations do). Any > hints, regarding other functions to use or ways to maket his speedier, would > be much appreciated! > > pairwise.n <- function(df=stop("Must provide data frame!")) { > if (!is.data.frame(df)) { > df <- as.data.frame(df) > } > colNum <- ncol(df) > result <- matrix(data=NA,nrow=colNum,ncol=ncolNum,dimnames=list(colnames(df),colnames(df))) > for(i in 1:colNum) { > for (j in i:colNum) { > result[i,j] <- length(df[!is.na(df[i])&!is.na(df[j])])/colNum > } > } > result > } > > -- > Adam D. I. Kramer > University of Oregon > > ______________________________________________ > R-help at stat.math.ethz.ch mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >
Hi, You can use complete.cases It should run faster than the code you suggested. See following example: x <- matrix(runif(30),10,3) # introduce missing values x[sample(1:10,3),1] <- NA x[sample(1:10,3),2] <- NA x[sample(1:10,3),3] <- NA cor(x,use="pairwise.complete.obs") n <- ncol(x) n.na <- matrix(0, n, n) for (i in seq(1, n)) { n.na[i,i] <- sum( complete.cases(x[, i]) ) for (j in seq(i+1, length=n-i)) { ok <- sum( complete.cases(x[, i], x[, j]) ) n.na[i,j] <- n.na[j,i] <- ok } } HTH -Christos -----Original Message----- From: r-help-bounces at stat.math.ethz.ch [mailto:r-help-bounces at stat.math.ethz.ch] On Behalf Of Adam D. I. Kramer Sent: Monday, August 07, 2006 10:04 PM To: r-help at stat.math.ethz.ch Subject: [R] Pairwise n for large correlation tables? Hello, I'm using a very large data set (n > 100,000 for 7 columns), for which I'm pretty happy dealing with pairwise-deleted correlations to populate my correlation table. E.g., a <- cor(cbind(col1, col2, col3),use="pairwise.complete.obs") ...however, I am interested in the number of cases used to compute each cell of the correlation table. I am unable to find such a function via google searches, so I wrote one of my own. This turns out to be highly inefficient (e.g., it takes much, MUCH longer than the correlations do). Any hints, regarding other functions to use or ways to maket his speedier, would be much appreciated! pairwise.n <- function(df=stop("Must provide data frame!")) { if (!is.data.frame(df)) { df <- as.data.frame(df) } colNum <- ncol(df) result <- matrix(data=NA,nrow=colNum,ncol=ncolNum,dimnames=list(colnames(df),colnames( df))) for(i in 1:colNum) { for (j in i:colNum) { result[i,j] <- length(df[!is.na(df[i])&!is.na(df[j])])/colNum } } result } -- Adam D. I. Kramer University of Oregon ______________________________________________ R-help at stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.
On Tue, 8 Aug 2006, ggrothendieck at gmail.com wrote:> Try this: > > # mat is test matrix > mat <- matrix(1:25, 5) > mat[2,2] <- mat[3,4] <- NA > crossprod(!is.na(mat))Exactly what I was looking for! Thanks. --Adam> > > On 8/7/06, Adam D. I. Kramer <adik at ilovebacon.org> wrote: >> Hello, >> >> I'm using a very large data set (n > 100,000 for 7 columns), for which I'm >> pretty happy dealing with pairwise-deleted correlations to populate my >> correlation table. E.g., >> >> a <- cor(cbind(col1, col2, col3),use="pairwise.complete.obs") >> >> ...however, I am interested in the number of cases used to compute each >> cell of the correlation table. I am unable to find such a function via >> google searches, so I wrote one of my own. This turns out to be highly >> inefficient (e.g., it takes much, MUCH longer than the correlations do). Any >> hints, regarding other functions to use or ways to maket his speedier, would >> be much appreciated! >> >> pairwise.n <- function(df=stop("Must provide data frame!")) { >> if (!is.data.frame(df)) { >> df <- as.data.frame(df) >> } >> colNum <- ncol(df) >> result <- matrix(data=NA,nrow=colNum,ncol=ncolNum,dimnames=list(colnames(df),colnames(df))) >> for(i in 1:colNum) { >> for (j in i:colNum) { >> result[i,j] <- length(df[!is.na(df[i])&!is.na(df[j])])/colNum >> } >> } >> result >> } >> >> -- >> Adam D. I. Kramer >> University of Oregon