I know it's conventional to report bugs to the maintainer, but I'm not sure which package actually contains this bug(s), so I apologize for sending this to the list at large. I see the bug under both R 2.1.1, and R 2.2.1. (I sent a related message a while ago, but this one has more detail.) library(MASS) library(nlme) fit.model <- function(il, model.family) { cs <- Initialize(corSymm(form=~1|id), data=il) glmmPQL(score~test+coder, random=~1|id, family=model.family, data=il, correlation=cs) } score <- c(1,8,1,3,4,4,2,5,3,6,0,3,1,5,0,5,1,11,1,2,4,5,2,4,1,6,1,2,8,16,5,16,3,15,3,12,4,9,2,4,1,8,2,6,4,11,2,9,3,17,2,6) id <- rep(1:13, rep(4, 13)) test <- gl(2, 1, length(score), labels=c("pre", "post")) coder <- gl(2, 2, length(score), labels=c("two", "three")) original <- data.frame(id, score, test, coder) sorted.ok <- original[order(original$id, original$score, original$test, original$coder),] sorted2.ok <- original[order(original$id, original$test, original$score, original$coder),] sorted3.not.ok <- original[order(original$score, original$id, original$test, original$coder),] print(summary(fit.model(original, poisson))) print(summary(fit.model(sorted.ok, poisson))) print(summary(fit.model(sorted2.ok, poisson))) print(summary(fit.model(sorted3.not.ok, poisson))) That last line produces, under R version 2.1.1, 2005-06-20, i386-pc-mingw32 attached base packages: [1] "methods" "stats" "graphics" "grDevices" "utils" "datasets" [7] "base" other attached packages: MASS nlme "7.2-20" "3.1-65" iteration 1 Error in logLik.reStruct(object, conLin) : NA/NaN/Inf in foreign function call (arg 3) That same last line produces, under R version 2.2.1, 2005-12-20, i386-pc-mingw32 attached base packages: [1] "methods" "stats" "graphics" "grDevices" "utils" "datasets" [7] "base" other attached packages: MASS nlme "7.2-24" "3.1-68.1" iteration 1 Error in lme.formula(fixed = zz ~ test + coder, random = ~1 | id, data = list( : false convergence (8) Moreover, summary(fit.model(original, poisson)) produces a different output than either summary(fit.model(sorted.ok, poisson)) or summary(fit.model(sorted2.ok, poisson)), but the latter two do equal each other.