Hello all, Is AIC calculated incorrectly in lmer? It appears as though it uses AIC = -2*logLik - 2*#parms, instead of -2*LogLik + 2*#parms? Below is output from one of many models I have tried: Generalized linear mixed model fit using PQL Formula: cswa ~ pcov.ess1k + (1 | year) Data: ptct50.5 Family: poisson(log link) AIC BIC logLik deviance 224.8466 219.19 -114.4233 228.8466 Random effects: Groups Name Variance Std.Dev. year (Intercept) 0.0062643 0.079147 # of obs: 125, groups: year, 2 Estimated scale (compare to 1) 1.277183 Fixed effects: Estimate Std. Error z value Pr(>|z|) (Intercept) -0.1059628 0.1283976 -0.82527 0.4092 pcov.ess1k 0.0101182 0.0093962 1.07683 0.2816 A snip of my data: cswa pcov.ess250 year [1,] 4 7.14 2004 [2,] 4 19.26 2003 [3,] 1 3.66 2004 I'm using R 2.1.1 with Windows XP. Thanks, Richard -- Richard Chandler Department of Natural Resources Conservation UMass Amherst (413)545-1237
The calculation is being done in print(data.frame(AIC = AIC(llik), BIC = BIC(llik), logLik = c(llik), deviance = -2*llik, row.names = "")) where llik is defined as llik <- object at logLik so the important question is whether the logLik slot has the correct values for the number of parameters. By the way, why are you calculating a random effect for year when you only have two years of data? The estimate of the variance of that random effect will have almost no precision. On 10/7/05, Richard Chandler <rchandler at forwild.umass.edu> wrote:> Hello all, > > Is AIC calculated incorrectly in lmer? It appears as though it uses > AIC = -2*logLik - 2*#parms, instead of -2*LogLik + 2*#parms? Below is > output from one of many models I have tried: > > Generalized linear mixed model fit using PQL > Formula: cswa ~ pcov.ess1k + (1 | year) > Data: ptct50.5 > Family: poisson(log link) > AIC BIC logLik deviance > 224.8466 219.19 -114.4233 228.8466 > Random effects: > Groups Name Variance Std.Dev. > year (Intercept) 0.0062643 0.079147 > # of obs: 125, groups: year, 2 > > Estimated scale (compare to 1) 1.277183 > > Fixed effects: > Estimate Std. Error z value Pr(>|z|) > (Intercept) -0.1059628 0.1283976 -0.82527 0.4092 > pcov.ess1k 0.0101182 0.0093962 1.07683 0.2816 > > > A snip of my data: > > cswa pcov.ess250 year > [1,] 4 7.14 2004 > [2,] 4 19.26 2003 > [3,] 1 3.66 2004 > > I'm using R 2.1.1 with Windows XP. > > Thanks, > Richard > > -- > Richard Chandler > Department of Natural Resources Conservation > UMass Amherst > (413)545-1237 > > ______________________________________________ > R-help at stat.math.ethz.ch mailing list > stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide! R-project.org/posting-guide.html >
Hi, my reply just concerns the usage of AIC in mixed models and not the lmer package. The "standard" AIC is actually unconditional. Vaida and Blanchard (2003, Proceeding 19 IWSM,101-105) discuss that a "conditional" version should be more appropriate in a mixed framework. I don't whether the paper has been pubblished elsewhere. regards, vito Richard Chandler wrote:> Hello all, > > Is AIC calculated incorrectly in lmer? It appears as though it uses > AIC = -2*logLik - 2*#parms, instead of -2*LogLik + 2*#parms? Below is > output from one of many models I have tried: > > Generalized linear mixed model fit using PQL > Formula: cswa ~ pcov.ess1k + (1 | year) > Data: ptct50.5 > Family: poisson(log link) > AIC BIC logLik deviance > 224.8466 219.19 -114.4233 228.8466 > Random effects: > Groups Name Variance Std.Dev. > year (Intercept) 0.0062643 0.079147 > # of obs: 125, groups: year, 2 > > Estimated scale (compare to 1) 1.277183 > > Fixed effects: > Estimate Std. Error z value Pr(>|z|) > (Intercept) -0.1059628 0.1283976 -0.82527 0.4092 > pcov.ess1k 0.0101182 0.0093962 1.07683 0.2816 > > > A snip of my data: > > cswa pcov.ess250 year > [1,] 4 7.14 2004 > [2,] 4 19.26 2003 > [3,] 1 3.66 2004 > > I'm using R 2.1.1 with Windows XP. > > Thanks, > Richard >-- ===================================Vito M.R. Muggeo Dip.to Sc Statist e Matem `Vianelli' Universit?? di Palermo viale delle Scienze, edificio 13 90121 Palermo - ITALY tel: 091 6626240 fax: 091 485726/485612