João Mendes Moreira
2005-Apr-26 14:46 UTC
[R] Error using e1071 svm: NA/NaN/Inf in foreign function call
Hello, As far I saw in archive mailing list, I am not the first person with this problem. Anyway I was not able to pass this error once the information I got from the archive it is not very conclusive for this case. I have used linear, radial and sigmoid kernels for the same data in the same conditions and everything is ok. This problem just happens with the polynomial kernel. I send the debuging result from a reproducible example. The error message is at the end. Thanks in advance Joao _________________________________________________ FEUP - Engineering Faculty, Porto University - Portugal DEMEGI/GEIN Tel.: +351 22 508 1639 Fax: +351 22 508 1538 Example: debugging in: svm(Fim ~ ., data = list(Inicio = c(25056, 28554, 32074, 33266, 39116, 40466, 41684, 42919, 46233, 47772, 48857, 50613, 52626, 56210, 58817, 62476, 25471, 27619, 28342, 29093, 29814, 31971, 32861, 34861, 35757, 36386, 38455, 42566, 43368, 46749, 47879, 48993, 49759, 50234, 51477, 51552, 51835, 52747, 53219, 54654, 55038, 56458, 58147, 58588, 59297, 60246, 61078, 61766, 62252, 64219, 64609, 66020, 67155, 67866, 71006, 71771, 72851, 73689, 24464, 25808, 29370, 34246, 37772, 38930, 42631, 46039, 47247, 49797, 50887, 54400, 58090, 59284, 62835, 69276, 75084, 27295, 31077, 32004, 33357, 34505, 35210, 39278, 40773, 48925, 51568, 52623, 54216, 59771, 60759, 64410, 67766, 71363, 23238, 23981, 24647, 26498, 29248, 29837, 30372, 31583, 33680, 35404, 35913, 37145, 39135, 39381, 41374, 42626, 44911, 48595, 49161, 50376, 50983, 51562, 51995, 53856, 57033, 57706, 57983, 58692, 59346, 60522, 64186, 69265, 70944, 72866, 73804, 25704, 27485, 29070, 29244, 30025, 34286, 35797, 36534, 37194, 38188, 39018, 39829, 42681, 43212, 46788, 47142, 49024, 51016, 52888, 53416, 54579, 55023, 56971, 58974, 65278, 66524, 73780, 23432, 24009, 24576, 25382, 26446, 28081, 28815, 29382, 30545, 31001, 32360, 32897, 33620, 34824, 35231, 36854, 39980, 40601, 43810, 47241, 50895, 52016, 52781, 53893, 55148, 57066, 57463, 60234, 60539, 62271, 63602, 63898, 67163, 25705, 26312, 27191, 29796, 31031, 32947, 34245, 35416, 42399, 43585, 45441, 47346, 49180, 51126, 52209, 52807, 53777, 55100, 56960, 57600, 58153, 59776, 60726, 61665, 62252, 63579, 65315, 67087, 69278, 71865, 74845, 23457, 27725, 28387, 29070, 29324, 30527, 32308, 33018, 33555, 34086, 36698, 37812, 38424, 43138, 44917, 47252, 47749, 48371, 49173, 49529, 50079, 50831, 52817, 54515, 56300, 56841, 59390, 60488, 61676, 63473, 66798, 68636, 69266, 69996, 72289, 73708, 25981, 28212, 31749, 32981, 34046, 36499, 37762, 40061, 41523, 45147, 46265, 48704, 49840, 52050, 53554, 54447, 55765, 58446, 60424, 61964, 62823, 65211, 66269, 67818, 69051, 70375, 30865, 35662, 36956, 40381, 41567, 42838, 44156, 45250, 47778, 48956, 51925, 52634, 58047, 59131, 60439, 60793, 63402, 68843, 73788, 29262, 30645, 31228, 32648, 35312, 36440, 37077, 38279, 40234, 41266, 44311, 46614, 47303, 47849, 48443, 49146, 49551, 50602, 52085, 57448, 59759, 61350, 70081, 23412, 24078, 25157, 25813, 26845, 27522, 28035, 29885, 33453, 34823, 36470, 38876, 43025, 45422, 46674, 48547, 49026, 51011, 52661, 55224, 56155, 56881, 58671, 59214, 60475, 61110, 61691, 68951, 70135, 73754, 23349, 24817, 25505, 26846, 29162, 31760, 32979, 33497, 34661, 35836, 40191, 44880, 45457, 46079, 47357, 48374, 49093, 50187, 51892, 54524, 55210, 55810, 56243, 57605, 58565, 59249, 60339, 62345, 65299, 66304, 67782, 71822, 23275, 24132, 24592, 25057, 28456, 32484, 32961, 33442, 34287, 34864, 35334, 37177, 48274, 49067, 50791, 52114, 52728, 54547, 56413, 56826, 59311, 60416, 61196, 61850, 63257, 67009, 69268, 70260, 73661, 23479, 23929, 24592, 25223, 25806, 26370, 27576, 29322, 30067, 31670, 32224, 33184, 33535, 34792, 35242, 36615, 37709, 39014, 40690, 43199, 45041, 46178, 46717, 47277, 47810, 50404, 50956, 52215, 52788, 53241, 54447, 55675, 56210, 57100, 58765, 63026, 63679, 68971, 71276, 72867, 73799, 24590, 29347, 30606, 34185, 37677, 39006, 40041, 43744, 46158, 48638, 49874, 52021, 55689, 58049, 60456, 62896, 63977, 65408, 67863, 69060, 73589, 30936, 33051, 34518, 38084, 39214, 40288, 41716, 45256, 46364, 47792, 48765, 49956, 54435, 55466, 58190, 62216, 63318, 70175, 71250, 74837, 25274, 26921, 27596, 28962, 29314, 29891, 33652, 37706, 39515, 40221, 40742, 44280, 44754, 46095, 47423, 49651, 51428, 57608, 58045, 60667, 61588, 62560, 68305, 71095, 72804, 23225, 26405, 26912, 28682, 29291, 32259, 34827, 35375, 38231, 40118, 44419, 45055, 45542, 46669, 47317, 47903, 48558, 49082, 49314, 50926, 51564, 52772, 53939, 56079, 57392, 58776, 59301, 61751, 63511, 66226, 70126, 73799, 24632, 26950, 27431, 31036, 31775, 32411, 33520, 34676, 36510, 37164, 40126, 40747, 41441, 42627, 44878, 46147, 47375, 49268, 49646, 50215, 56825, 59737, 62569, 69224, 70171, 24576, 27596, 29243, 29855, 30506, 31750, 32915, 34695, 35328, 36482, 37218, 38307, 39061, 44248, 44999, 46774, 47275, 48561, 49719, 50318, 50920, 51417, 53241, 53860, 54590, 55251, 57012, 57468, 58213, 58751, 60465, 61090, 61786, 62816, 63616, 63938, 65290, 66417, 67233, 69208, 23412, 25847, 27016, 27383, 28148, 29293, 31027, 33593, 34068, 34687, 36017, 36462, 37178, 38265, 39551, 40000, 42514, 43113, 44989, 46769, 47920, 48489, 49091, 49797, 50200, 50776, 51615, 52711, 53104, 54588, 55322, 56896, 59886, 60182, 61287, 63577, 65428, 66480, 69263, 70046, 73880, 25753, 30615, 31767, 34564, 36280, 39028, 40178, 50986, 52221, 54516, 57059, 57799, 62873, 65335, 69125, 72614, 32021, 38058, 39208, 42989, 45188, 48922, 51020, 52658, 55067, 59017, 60711, 61537, 62579, 65228, 72481, 23964, 30962, 31663, 32221, 33051, 33468, 34883, 39461, 45075, 47328, 49101, 49842, 51566, 52059, 54614, 58096, 59574, 59964, 60816, 71279, 27789, 28527, 32171, 32839, 34501, 37116, 37721, 39516, 45010, 48454, 54883, 55697, 58598, 59206, 61640, 63452, 73711, 24708, 25757, 26323, 28307, 28822, 31127, 32268, 33076, 34693, 35911, 37271, 37796, 38672, 43098, 43627, 44232, 46738, 47198, 49161, 50414, 51506, 55031, 55819, 56856, 57274, 59962, 60618, 61642, 62212, 62905, 65976, 70597, 73805, 23957, 25173, 27583, 29619, 31896, 32318, 34934, 36641, 37320, 38694, 39617, 43314, 44912, 47215, 48460, 54593, 55107, 56772, 57347, 59275, 64162, 65133, 67543, 69197, 72889, 74972, 23911, 26419, 26816, 32293, 34055, 34778, 35731, 41369, 44251, 46622, 47325, 49787, 51491, 52682, 53505, 54923, 56894, 57484, 59765, 63825, 65984, 70257), Tempo = c(3220, 2866, 3453, 3286, 3492, 3218, 3241, 3402, 3663, 4253, 3831, 4105, 3473, 3795, 3689, 3349, 3597, 3977, 4444, 4197, 4061, 3587, 3794, 3764, 3488, 4351, 4092, 5104, 4760, 4188, 4650, 4808, 4724, 4658, 4117, 4802, 5146, 4750, 4976, 4507, 4783, 4774, 4770, 4739, 4305, 4389, 4783, 4331, 3790, 4625, 5174, 4253, 3495, 4382, 3837, 3110, 3207, 2934, 4209, 4124, 3517, 3923, 3851, 3554, 4059, 4156, 3780, 3534, 4384, 4273, 4034, 3893, 4207, 3279, 3274, 3481, 3218, 3646, 3628, 3563, 4079, 3328, 3252, 4164, 3779, 3722, 3857, 3686, 3818, 3621, 4605, 3844, 3234, 3106, 3252, 3833, 4892, 5069, 4776, 4582, 3820, 4497, 4208, 4257, 3946, 4304, 4434, 4398, 4434, 4682, 4593, 4695, 4536, 5072, 5233, 4951, 5375, 4742, 4647, 4755, 4727, 4800, 4689, 4825, 4412, 2947, 2860, 3919, 4404, 4089, 4432, 4329, 4276, 4523, 4197, 4362, 4178, 4087, 5182, 4314, 4473, 4350, 4668, 4344, 4683, 5516, 5067, 4757, 4685, 4750, 4326, 4315, 4490, 2928, 3461, 3471, 3251, 3641, 3790, 8727, 4629, 4069, 4232, 4677, 4022, 4283, 4096, 4378, 4040, 4642, 5026, 4820, 4451, 4753, 4360, 4783, 5095, 4886, 4741, 5060, 4781, 4522, 4759, 4907, 4287, 4460, 4752, 4259, 3750, 4393, 5191, 4993, 4749, 4309, 4059, 4824, 4539, 4681, 4669, 4953, 4580, 4864, 4604, 4755, 4935, 4932, 4846, 4479, 5164, 5240, 4778, 6603, 6004, 4517, 5051, 4176, 3678, 3368, 3609, 4463, 4613, 4464, 5013, 5152, 4359, 4414, 4035, 4125, 4071, 4178, 5007, 4203, 4508, 4281, 4480, 4510, 4241, 4918, 4988, 5047, 4062, 4695, 5057, 4631, 5146, 4717, 5023, 5039, 4509, 4071, 3952, 3922, 3470, 2980, 3168, 4051, 4095, 4037, 4064, 4157, 4046, 4141, 4295, 4340, 3960, 3855, 3978, 4180, 3982, 4148, 3888, 3820, 4357, 3906, 3552, 4029, 3867, 3481, 4067, 3497, 3581, 3573, 3610, 3731, 3432, 3578, 3012, 4329, 3769, 3641, 4174, 3724, 3491, 3540, 3444, 3313, 3996, 4560, 2863, 4504, 4842, 5233, 4403, 4342, 4639, 4430, 4394, 4333, 4162, 4524, 4377, 4438, 4881, 4464, 4821, 4702, 4936, 5099, 5001, 4715, 5118, 4128, 3498, 3536, 3776, 3586, 4812, 4654, 4373, 5123, 4409, 4373, 4392, 4451, 4486, 4513, 4756, 4619, 4740, 4714, 4865, 4616, 4907, 4532, 4777, 4554, 4809, 4543, 4613, 4454, 6310, 3016, 3527, 4052, 4476, 4282, 5691, 6080, 4993, 4655, 4280, 4226, 4405, 4033, 4526, 4368, 4661, 4665, 4382, 4951, 4907, 4374, 4504, 4696, 4800, 4676, 4639, 4605, 4862, 4820, 4597, 3818, 4478, 3502, 3536, 3386, 3455, 3445, 4209, 4386, 4083, 4514, 4097, 4088, 4168, 4184, 4524, 4875, 5798, 5730, 4982, 6009, 4740, 4939, 4710, 5013, 5266, 4793, 4682, 5465, 4297, 3644, 3104, 3354, 2918, 3646, 3557, 4164, 4110, 4364, 5018, 4615, 4287, 4204, 4288, 4239, 4144, 4207, 4032, 4126, 4330, 4210, 4275, 4301, 4377, 4090, 4507, 4909, 5191, 5093, 5326, 4863, 5358, 4726, 4574, 4952, 5397, 4857, 5660, 5665, 4025, 4123, 3054, 3116, 4435, 4155, 3440, 3826, 4342, 3725, 4088, 4342, 3864, 3590, 3798, 3994, 4103, 3660, 4240, 4156, 3901, 3620, 3968, 3651, 3221, 3115, 2921, 3428, 3341, 3555, 3220, 3408, 3986, 4032, 4152, 4286, 3733, 3892, 3694, 3559, 4106, 3468, 4278, 3226, 2652, 3473, 4212, 4516, 4763, 4263, 5140, 4274, 4221, 4427, 4375, 4431, 4405, 4196, 4495, 4683, 4660, 4395, 4685, 4966, 4937, 4713, 4997, 4772, 4448, 3109, 3673, 3807, 4343, 4531, 4463, 4371, 4374, 4334, 5136, 5005, 4329, 4324, 4473, 4257, 4743, 4698, 4807, 4751, 5121, 4752, 4816, 4944, 4983, 4920, 4636, 4714, 4853, 4655, 4804, 4670, 3878, 2882, 3463, 4312, 4113, 4532, 4408, 4733, 4391, 4275, 4172, 4291, 4281, 4412, 4389, 4456, 4363, 4009, 4374, 4861, 5233, 5418, 5460, 4823, 5279, 5001, 3364, 3608, 4010, 4298, 5238, 4376, 4165, 4150, 4514, 4120, 4574, 4240, 4272, 4324, 4509, 4452, 4626, 4923, 4677, 4599, 4718, 4787, 4505, 4802, 4452, 4702, 4714, 4681, 4811, 4646, 4763, 4674, 4668, 4402, 4937, 4753, 4889, 4736, 5083, 5210, 5025, 3450, 4053, 4078, 4058, 3883, 4197, 4354, 3975, 4039, 4367, 4191, 3772, 4115, 4455, 4326, 4601, 4113, 4149, 4206, 4541, 4360, 4790, 4607, 4540, 5047, 4936, 4738, 4780, 4997, 4757, 4790, 4519, 4505, 4994, 4633, 4664, 4909, 5106, 4923, 4144, 2893, 4460, 3844, 4180, 3946, 4605, 3916, 4077, 3956, 4017, 4137, 4043, 4374, 4127, 4202, 3424, 3406, 3524, 3441, 3545, 3406, 3703, 3397, 3855, 3928, 4158, 3285, 3805, 3595, 3869, 3699, 3106, 3491, 4213, 4981, 4314, 4423, 4242, 4449, 4587, 4234, 4307, 4571, 4517, 4694, 5018, 4306, 4991, 5296, 5257, 6182, 3085, 4418, 3975, 4450, 4309, 4769, 4294, 4303, 5762, 4021, 4292, 5044, 4776, 4702, 4800, 4633, 4669, 3212, 3568, 3601, 4410, 4032, 4066, 4208, 4057, 4178, 3948, 4675, 4784, 4587, 5074, 4315, 4719, 4430, 4535, 4783, 4590, 4706, 5100, 4700, 4409, 4692, 5073, 4754, 4365, 4680, 4913, 4624, 4338, 4061, 3008, 3667, 3471, 4087, 4927, 4147, 4224, 4323, 4245, 4126, 4310, 3848, 4445, 4521, 4858, 4835, 5463, 4719, 4489, 4840, 4437, 4774, 4639, 5249, 4421, 2904, 3176, 3488, 3919, 4249, 4248, 4008, 4252, 4609, 4131, 4545, 4622, 4562, 4583, 4668, 4871, 4564, 4872, 4457, 4810, 5055, 6424, 5017, 3916), Tipo1 = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2), Tipo2 = c(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6), Tipo3 = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30)), scale = c(TRUE, TRUE, FALSE, FALSE, TRUE), type = "nu-regression", kernel = "polynomial", cost = 1, nu = 0, degree = 2, gamma = 0.0009765625, coef0 = -1) debug: UseMethod("svm") Browse[1]> Error in predict.svm(ret, xhold) : NA/NaN/Inf in foreign function call (arg 9)>[[alternative HTML version deleted]]
Achim Zeileis
2005-Apr-26 15:09 UTC
[R] Error using e1071 svm: NA/NaN/Inf in foreign function call
On Tue, 26 Apr 2005 15:46:20 +0100 Jo??o Mendes Moreira wrote:> Hello, > > As far I saw in archive mailing list, I am not the first person with > this problem. Anyway I was not able to pass this error once the > information I got from the archive it is not very conclusive for this > case. I have used linear, radial and sigmoid kernels for the same data > in the same conditions and everything is ok. This problem just > happens with the polynomial kernel. I send the debuging result from a > reproducible example. The error message is at the end.I receive a different error message: Error in eval(expr, envir, enclos) : Object "Fim" not found So much for the reproducibility... Wouldn't it be possible to simply use a data set that is already available in R, *please*? Anyways, it seems that your specification of `nu' causes the problem: 0 might be a little bit too small. Z
Achim Zeileis
2005-Apr-27 12:50 UTC
[R] Error using e1071 svm: NA/NaN/Inf in foreign function call
On Wed, 27 Apr 2005 10:25:55 +0100 Jo??o Mendes Moreira wrote:> My mistake. > > I am sending the ImageBeforeError.RData file.No, no, no! Please the read the posting guide and please read the answers that were posted for you. As you obviously did not do that, let me read it to you again: <Z> Wouldn't it be possible to simply use a data set that is already available in R, *please*? </Z> The solution is definitely not to send a huge data file (6.5M) to those who offered advice and to the subsribers of R-help (where it does not get through anyway, I think). If it is really data-dependent, then you might post the data on the web, but even then it is not very helpful to post a file in which there are dozens of objects when all you need is a data frame.> To reproduce the error you must load the file and then to do: > > library("e1071") > model <- do.call(learner,learner.pars) > > I am using nu = 0.7. At this moment I do not get an error but the svm > function blocks. It was al that night running without results.So there is no error as you claim above (and as you claimed in your previous mail). This is just to report the fact, that your computations are still running. Let me provide a simple reproducible example which does not involve spamming R-helpers with .RData files. You seem to want to report that the svm set.seed(1071) y <- rnorm(100) x1 <- rnorm(100) x2 <- rnorm(100) svm(y ~ x1 + x2) can be fitted very quickly whereas svm(y ~ x1 + x2, cost = 4096, kernel = "polynomial", degree = 4) takes much longer. The decisive parameter here is the cost parameter which is unusually large. I'm not sure why the algorithm gets so slow, but you might also want to check whether a cost parameter of the magnitude is appropriate. The other parameter which is important is the degree of the polynomial kernel, in which the complexity is also increasing. So the message is: Be careful in the selection of the hyperparameters of the SVM. Maybe someone else on the list can provide more insight on guidelines for choosing the hyperparameters of a polynomial kernel SVM. Z> Using > other kernels it used to finish in a few seconds. I have done already > thousands of tests with other kernels. Only with the polynomial one I > am not able to get results. > > Thanks for any help. > > Joao > ----- Original Message ----- > From: "Achim Zeileis" <Achim.Zeileis at wu-wien.ac.at> > To: "Jo??o Mendes Moreira" <jmoreira at fe.up.pt> > Cc: <r-help at stat.math.ethz.ch> > Sent: Tuesday, April 26, 2005 4:09 PM > Subject: Re: [R] Error using e1071 svm: NA/NaN/Inf in foreign function > call > > > > On Tue, 26 Apr 2005 15:46:20 +0100 Jo??o Mendes Moreira wrote: > > > >> Hello, > >> > >> As far I saw in archive mailing list, I am not the first person > >with> this problem. Anyway I was not able to pass this error once the > >> information I got from the archive it is not very conclusive for > >this> case. I have used linear, radial and sigmoid kernels for the > >same data> in the same conditions and everything is ok. This problem > >just> happens with the polynomial kernel. I send the debuging result > >from a> reproducible example. The error message is at the end. > > > > I receive a different error message: > > Error in eval(expr, envir, enclos) : Object "Fim" not found > > So much for the reproducibility... Wouldn't it be possible to simply > > use a data set that is already available in R, *please*? > > > > Anyways, it seems that your specification of `nu' causes the > > problem: 0 might be a little bit too small. > > Z > > > > >
David Meyer
2005-Apr-28 11:11 UTC
[R] Error using e1071 svm: NA/NaN/Inf in foreign function call
Joao: 1) The error message you get when setting nu=0 is due to the fact that no support vectors can be found with that extreme restriction, and this confuses the predict function (try svm(...., fitted = false): the model returned is empty). In fact, the C++ code interfaced by svm() clearly allows nu = 0 and nu = 1, although these aren't sensible values. I will add a check to the R code and drop Chih-Chen Lin, the author of the C code, a message -- thanks for pointing this out. 2) The libsvm code is not optimized for polynomial kernels and is known to perform quite badly in that case (in contrast to the RBF kernel for which it is very fast). Do you think you need the whole data set for tuning the parameters? Best, David