Dear list, I am trying to do a benchmark study for my case study. It is a regression problem. Among other models I use randomForest. Using the following code the result is around 0.628, and this make sense comparing with other methods. The Theil function implements Theil's U statistic. I do not present the definition of some variables because it is not important to understand my problem. I use sliding window trategy. library("randomForest") rf.theil <- vector() learner='randomForest' for (i in 1:6) { eval.sum <- 0 test.pos=test.pos.ini while (test.pos <= n) { naive.pred <- c(orig.data[test.pos-1,7]) model <- randomForest(Duracao ~ ., data=orig.data[1:(test.pos-1),], na.action=na.omit, ntree=5000, mtry=i) preds <- predict(model,orig.data[test.pos:min(n,test.pos+relearn.step- 1),]) test.pos <- test.pos+relearn.step a<-theil(preds, naive.pred, orig.data[test.pos:min (n,test.pos+relearn.step-1),7]) if (is.na(a)==FALSE) {eval.sum <- eval.sum + a} } rf.theil <- c(rf.theil, eval.sum/(trunc((n-test.pos.ini)/relearn.step)+1)) } rf.min <- min(rf.theil, na.rm=TRUE) rf.indices <- seq(along=rf.theil)[rf.theil == rf.min] But running 5 times randomForest for each value of i, and choosing the best result according U statistic, I got a value around 0.178... And this value does not make sense. I use the some strategie with nnet and it gives good results. The code is: library("randomForest") rf.theil <- vector() for (i in 1:6) { eval <- 100000 eval.sum <- 0 test.pos=test.pos.ini while (test.pos <= n) { naive.pred <- c(orig.data[test.pos-1,7]) for (j in 1:5) { model <- randomForest(Duracao ~ ., data=orig.data[1:(test.pos-1),], na.action=na.omit, ntree=5000, mtry=i) preds <- predict(model, orig.data[test.pos:min(n,test.pos+relearn.step-1),]) eval.temp <- theil(preds, naive.pred, orig.data[test.pos:min(n,test.pos+relearn.step-1),7]) if (eval.temp < eval) eval <- eval.temp } if (is.na(eval)==FALSE) eval.sum <- eval.sum + eval test.pos <- test.pos+relearn.step } rf.theil <- c(rf.theil, eval.sum/(trunc((n-test.pos.ini)/relearn.step)+1)) } rf.min <- min(rf.theil, na.rm=TRUE) Thanks for any help Joao Moreira