Ravi Varadhan
2003-Jul-15 21:02 UTC
[R] Why two chisq.test p values differ when the contingency
Hi Tao: The P-values for 2x2 table are generated based on a random (discrete uniform distribution) sampling of all possible 2x2 tables, conditioning on the observed margin totals. If one of the cells is extremely small, as in your case, you get a big difference in P-values. Suppose, you changed the cell with value 1 to, say, 5 or 6, then the two P-values are nearly the same. However, I don't understand why they should be so different, since the set of all possible 2x2 tables will be the same in both cases. I would be interested in knowing how this happens. Ravi. ----- Original Message ----- From: "Shi, Tao" <shidaxia at yahoo.com> Date: Tuesday, July 15, 2003 4:37 pm Subject: RE: [R] Why two chisq.test p values differ when the contingency> Hi, Ted and Dennis: > > Thanks for your speedy replies! I don't think this happens just > randomly, rather, I'm thinking it may be due to the way chisq.test > function handles simulation. Here shows why: (Ted, I think there > is an error in your code, "tx" should be t(x) ) > > > x > [,1] [,2] > [1,] 149 151 > [2,] 1 8 > > c2x<-chisq.test(x, simulate.p.value=T, B=100000)$p.value > > for(i in (1:20)){c2x<-c(c2x,chisq.test(x, simulate.p.value=T, > + B=100000)$p.value)} > > c2tx<-chisq.test(t(x), simulate.p.value=T, B=100000)$p.value > > for(i in (1:20)){c2tx<-c(c2tx,chisq.test(t(x), simulate.p.value=T, > + B=100000)$p.value)} > > cbind(c2x,c2tx) > c2x c2tx > [1,] 0.03727 0.01629 > [2,] 0.03682 0.01662 > [3,] 0.03671 0.01665 > [4,] 0.03788 0.01745 > [5,] 0.03706 0.01646 > [6,] 0.03715 0.01728 > [7,] 0.03664 0.01683 > [8,] 0.03681 0.01720 > [9,] 0.03742 0.01758 > [10,] 0.03712 0.01685 > [11,] 0.03739 0.01615 > [12,] 0.03811 0.01653 > [13,] 0.03711 0.01673 > [14,] 0.03639 0.01678 > [15,] 0.03714 0.01719 > [16,] 0.03774 0.01780 > [17,] 0.03574 0.01707 > [18,] 0.03661 0.01705 > [19,] 0.03751 0.01711 > [20,] 0.03683 0.01718 > [21,] 0.03678 0.01653 > > > > ...Tao > > ===========================================================> Ted.Harding at nessie.mcc.ac.uk wrote: > On 15-Jul-03 Tao Shi wrote: > >>x > > [,1] [,2] > > [1,] 149 151 > > [2,] 1 8 > >>t(x) > > [,1] [,2] > > [1,] 149 1 > > [2,] 151 8 > >>chisq.test(x, simulate.p.value=T, B=100000) > > Pearson's Chi-squared test with simulated p-value (based on > > 1e+05 replicates) > > data: x > > X-squared = 5.2001, df = NA, p-value = 0.03774 > > > >>chisq.test(t(x), simulate.p.value=T, B=100000) > > Pearson's Chi-squared test with simulated p-value (based on > > 1e+05 replicates) > > data: t(x) > > X-squared = 5.2001, df = NA, p-value = 0.01642 > > Possibly you may just have been unlucky, though the 0.03774 seems > large: > c2x<-chisq.test(x, simulate.p.value=T, B=100000)$p.value > for(i in (1:9)){c2x<-c(c2x,chisq.test(x, simulate.p.value=T, > B=100000)$p.value)} > c2tx<-chisq.test(tx, simulate.p.value=T, B=100000)$p.value > for(i in (1:9)){c2tx<-c(c2tx,chisq.test(tx, simulate.p.value=T, > B=100000)$p.value)} > cbind(c2x,c2tx) > c2x c2tx > [1,] 0.01627 0.01720 > [2,] 0.01672 0.01690 > [3,] 0.01662 0.01669 > [4,] 0.01733 0.01656 > [5,] 0.01679 0.01777 > [6,] 0.01715 0.01769 > [7,] 0.01765 0.01769 > [8,] 0.01703 0.01740 > [9,] 0.01704 0.01708 > [10,] 0.01669 0.01655 > > sd(c2x) > [1] 0.0003946715 > sd(c2tx) > [1] 0.0004737099 > > Ted. > > > ------------------------------------------------------------------- > - > E-Mail: (Ted Harding) > Fax-to-email: +44 (0)870 167 1972 > Date: 15-Jul-03 Time: 21:00:04 > ------------------------------ XFMail ----------------------------- > - > > > > > > --------------------------------- > > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help at stat.math.ethz.ch mailing list > https://www.stat.math.ethz.ch/mailman/listinfo/r-help >
Reasonably Related Threads
- Why two chisq.test p values differ when the contingency table is transposed?
- The two chisq.test p values differ when the contingency table is transposed! (PR#3486)
- The two chisq.test p values differ when the contingency table (PR#3896)
- Numerical stability in chisq.test
- sscanf/stroul (was: Re: [PATCH nbdkit v3 2/3] Add new retry filter.)