A suggestion : eval.delta <- function(delta){ cat("VALUES\n") numbers <- 1:length(delta) case1 <- numbers[delta <= 2] case2 <- numbers[delta>2 & delta <= 4] case3 <- numbers[delta>4 & delta <= 7] case4 <- numbers[delta>7 & delta <= 10] case5 <- numbers[delta>10] cat("<= 2 (no credible evidence)\t",length(case1),"\t",delta[case1],"\n") cat("> 2 y <= 4 (weak evidence)\t",length(case2),"\t",delta[case2],"\n") cat("> 4 y <= 7 (definite evidence)\t",length(case3),"\t",delta[case3],"\n") cat("> 7 y <= 10 (strong evidence)\t",length(case4),"\t",delta[case4],"\n") cat("> 10 (very strong evidence)\t",length(case5),"\t",delta[case5],"\n") cat("\nMODELS\n") cat("<= 2 (no credible evidence)\t",length(case1),"\t",case1,"\n") cat("> 2 y <= 4 (weak evidence)\t",length(case2),"\t",case2,"\n") cat("> 4 y <= 7 (definite evidence)\t",length(case3),"\t",case3,"\n") cat("> 7 y <= 10 (strong evidence)\t",length(case4),"\t",case4,"\n") cat("> 10 (very strong evidence)\t",length(case5),"\t",case5,"\n") } Ole "Peter B. Mandeville" wrote:> > I have a function "eval.delta" which does what I want but isn't very > elegant. I have consulted the R documents, MASS, and S Programming. Is > there a practical way to optimize the code? Thank you very much. > > Peter B. > > Function: > > eval.delta <- function(delta){ > cat("VALUES\n") > vlr <- NULL > k <- 0 > for(j in 1:length(delta)) if(delta[j] <= 2){ > k <- k+1 > vlr[k] <- delta[j] > } > cat("<= 2 (no credible evidence)\t",k,"\t",vlr,"\n") > vlr <- NULL > k <- 0 > for(j in 1:length(delta)) if(delta[j]>2 & delta[j] <= 4){ > k <- k+1 > vlr[k] <- delta[j] > } > cat("> 2 y <= 4 (weak evidence)\t",k,"\t",vlr,"\n") > vlr <- NULL > k <- 0 > for(j in 1:length(delta)) if(delta[j]>4 & delta[j] <= 7){ > k <- k+1 > vlr[k] <- delta[j] > } > cat("> 4 y <= 7 (definite evidence)\t",k,"\t",vlr,"\n") > vlr <- NULL > k <- 0 > for(j in 1:length(delta)) if(delta[j]>7 & delta[j] <= 10){ > k <- k+1 > vlr[k] <- delta[j] > } > cat("> 7 y <= 10 (strong evidence)\t",k,"\t",vlr,"\n") > vlr <- NULL > k <- 0 > for(j in 1:length(delta)) if(delta[j]>10){ > k <- k+1 > vlr[k] <- delta[j] > } > cat("> 10 (very strong evidence)\t",k,"\t",vlr,"\n") > cat("\nMODELS\n") > vlr <- NULL > k <- 0 > for(j in 1:length(delta)) if(delta[j] <= 2){ > k <- k+1 > vlr[k] <- j > } > cat("<= 2 (no credible evidence)\t",k,"\t",vlr,"\n") > vlr <- NULL > k <- 0 > for(j in 1:length(delta)) if(delta[j]>2 & delta[j] <= 4){ > k <- k+1 > vlr[k] <- j > } > cat("> 2 y <= 4 (weak evidence)\t",k,"\t",vlr,"\n") > vlr <- NULL > k <- 0 > for(j in 1:length(delta)) if(delta[j]>4 & delta[j] <= 7){ > k <- k+1 > vlr[k] <- j > } > cat("> 4 y <= 7 (definite evidence)\t",k,"\t",vlr,"\n") > vlr <- NULL > k <- 0 > for(j in 1:length(delta)) if(delta[j]>7 & delta[j] <= 10){ > k <- k+1 > vlr[k] <- j > } > cat("> 7 y <= 10 (strong evidence)\t",k,"\t",vlr,"\n") > vlr <- NULL > k <- 0 > for(j in 1:length(delta)) if(delta[j]>10){ > k <- k+1 > vlr[k] <- j > } > cat("> 10 (very strong evidence)\t",k,"\t",vlr,"\n") > } > > Data: > > > delta <- c(0,1.4,2.3,4.5,2.3,8.9,12.4,6.4,7.4,11.5,2,2) > > Function Call and Output: > > > eval.delta(delta) > VALUES > <= 2 (no credible evidence) 4 0 1.4 2 2 > > 2 y <= 4 (weak evidence) 2 2.3 2.3 > > 4 y <= 7 (definite evidence) 2 4.5 6.4 > > 7 y <= 10 (strong evidence) 2 8.9 7.4 > > 10 (very strong evidence) 2 12.4 11.5 > > MODELS > <= 2 (no credible evidence) 4 1 2 11 12 > > 2 y <= 4 (weak evidence) 2 3 5 > > 4 y <= 7 (definite evidence) 2 4 8 > > 7 y <= 10 (strong evidence) 2 6 9 > > 10 (very strong evidence) 2 7 10 > > > -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- > r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html > Send "info", "help", or "[un]subscribe" > (in the "body", not the subject !) To: r-help-request at stat.math.ethz.ch > _._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._-- Ole F. Christensen Department of Mathematics and Statistics Fylde College, Lancaster University Lancaster, LA1 4YF, England -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html Send "info", "help", or "[un]subscribe" (in the "body", not the subject !) To: r-help-request at stat.math.ethz.ch _._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._
On Mon, 24 Jun 2002, Peter B. Mandeville wrote:> I have a function "eval.delta" which does what I want but isn't very > elegant. I have consulted the R documents, MASS, and S Programming. Is > there a practical way to optimize the code? Thank you very much. ><snip>> Function Call and Output: > > > eval.delta(delta) > VALUES > <= 2 (no credible evidence) 4 0 1.4 2 2 > > 2 y <= 4 (weak evidence) 2 2.3 2.3 > > 4 y <= 7 (definite evidence) 2 4.5 6.4 > > 7 y <= 10 (strong evidence) 2 8.9 7.4 > > 10 (very strong evidence) 2 12.4 11.5 > > MODELS > <= 2 (no credible evidence) 4 1 2 11 12 > > 2 y <= 4 (weak evidence) 2 3 5 > > 4 y <= 7 (definite evidence) 2 4 8 > > 7 y <= 10 (strong evidence) 2 6 9 > > 10 (very strong evidence) 2 7 10 >You can get something like this, but not quite the same, fairly easily: labels<-c("<= 2 (no credible evidence)", " 2-4 (weak evidence) ", " 4-7 (definite evidence)", " 7-10 (strong evidence)", ">10 (very strong evidence)") classes<-cut(delta,c(0,2,4,7,10,Inf),include.lowest=TRUE,labels=labels) models<-by(1:length(delta),list(level=classes), function(x) c(n=length(x),x)) values<-by(1:length(delta),list(level=classes), function(x) c(n=length(x),x)) So, for example, models prints as> modelslevel: <= 2 (no credible evidence) n 4 1 2 11 12 ------------------------------------------------------------ level: 2-4 (weak evidence) n 2 3 5 ------------------------------------------------------------ level: 4-7 (definite evidence) n 2 4 8 ------------------------------------------------------------ level: 7-10 (strong evidence) n 2 6 9 ------------------------------------------------------------ level: >10 (very strong evidence) n 2 7 10 -thomas Thomas Lumley Asst. Professor, Biostatistics tlumley at u.washington.edu University of Washington, Seattle -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html Send "info", "help", or "[un]subscribe" (in the "body", not the subject !) To: r-help-request at stat.math.ethz.ch _._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._
I got this error when I try to install R (v 1.5.0) in a LINUX (Red Hat 7.1) LINUX 2.4.2 . error: failed dependencies: libblas.so.3 is needed by R-base-1.5.0.-1 Where can I find this library and how do I install it? Thank you Kenneth -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html Send "info", "help", or "[un]subscribe" (in the "body", not the subject !) To: r-help-request at stat.math.ethz.ch _._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._
Hi Kenneth, You can find the lapack package in: www.rpmfind.net I've had the same problem and I solved it with this link Cheers, Antonio Rodr?guez ----- Mensaje Original ----- De: Kenneth Cabrera <krcabrer at perseus.unalmed.edu.co> Fecha: Martes, Mayo 14, 2002 5:45 pm Asunto: [R] Where can I find BLAS library?> > I got this error when I try to install R (v 1.5.0) in a LINUX > (Red Hat > 7.1) LINUX 2.4.2 . > error: > failed dependencies: > libblas.so.3 is needed by R-base-1.5.0.-1 > > Where can I find this library and how do I install it? > Thank you > Kenneth > > -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- > .-.-.-.-.-.- > r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R- > FAQ.htmlSend "info", "help", or "[un]subscribe" > (in the "body", not the subject !) To: r-help- >request at stat.math.ethz.ch_._._._._._._._._._._._._._._._._._._._._._._._ ._._._._._._._._._._._._._._._._>-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html Send "info", "help", or "[un]subscribe" (in the "body", not the subject !) To: r-help-request at stat.math.ethz.ch _._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._
Dear R experts: I have this data base (data frame) with three variables where f1 and f2 are factors. I want to obtain a table with the sum of the third variable at each cross element of the two factors. Would you help me with any function idea? Original data base (data frame) f1 f2 v1 1 2 10 1 1 20 1 2 30 1 3 40 2 1 50 2 2 60 1 1 70 3 1 80 3 2 90 2 2 10 I would like to obtain this matrix (sum of the crossed elements with zeros where I don't have any crossed factor) Factor 1 90 40 40 Factor 2 50 70 0 80 90 0 Is it possible to obtain any kind of function (not only sum())? (like sd(), for example?) Thank you very much for your help. Kenneth -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html Send "info", "help", or "[un]subscribe" (in the "body", not the subject !) To: r-help-request at stat.math.ethz.ch _._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._
Hi R Experts! I have a database with 25000 rows and 30 columns and I want to make cluster analysis to cluster the 25000 records, but the memory exhausted using the "dist" function in "mva" library. I use the "--max-mem-size" up to 1780Mb (If I use more the R returns me a error message) What can I do? Thank you very much for your help. $platform [1] "i386-pc-mingw32" $arch [1] "i386" $os [1] "mingw32" $system [1] "i386, mingw32" $status [1] "" $major [1] "1" $minor [1] "5.0" $year [1] "2002" $month [1] "04" $day [1] "29" $language [1] "R" -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html Send "info", "help", or "[un]subscribe" (in the "body", not the subject !) To: r-help-request at stat.math.ethz.ch _._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._
Hi R Experts: I'm trying to run a "lm" model with a dataframe of 20607 records (and 23 variables, many of them factors) . (See at the end of the meesage) but I obtain the following message: Error: cannot allocate vector of size 522580 Kb I use the --max-mem-size 1790Mb option (because if I use a bigger number (1800Mb) it shows me a window with "Cannot reserve memory:terminating" message) When I use memory.limit(size=NA) I obtain [1] 1876951040 I try to reserve bigger memory with memory.limit(size=2500000000) But I obtain the following message when I call again memory.limit(size=NA) [1] -1879048192 And the memory problem persist when I try to run the "lm" function. I have a PIII computer with 128MB of RAM and 17Gb free on hard disk in W2K platform. Thank you for your help!!! $platform "i386-pc-mingw32" $arch "i386" $os "mingw32" $system "i386, mingw32" $status "" $major "1" $minor "5.0" $year "2002" $month "04" $day "29" $language "R" the call function is: lm(iscDIC.01~SALDOREAL+VALOAPRO+NUEVSALARI+ANTIG+ENDEUDA+ factor(FORMPAGO)+factor(FORMPAGO):SALDOREAL+factor(FORMPAGO):VALOAPRO+factor(FORMPAGO):NUEVSALARI+factor(FORMPAGO):ANTIG+factor(FORMPAGO):ENDEUDA+ factor(SUC)+factor(SUC):SALDOREAL+factor(SUC):VALOAPRO+factor(SUC):NUEVSALARI+factor(SUC):ANTIG+factor(SUC):ENDEUDA+ factor(PERIPAGO)+factor(PERIPAGO):SALDOREAL+factor(PERIPAGO):VALOAPRO+factor(PERIPAGO):NUEVSALARI+factor(PERIPAGO):ANTIG+factor(PERIPAGO):ENDEUDA+ factor(ESTCIVIL)+factor(ESTCIVIL):SALDOREAL+factor(ESTCIVIL):VALOAPRO+factor(ESTCIVIL):NUEVSALARI+factor(ESTCIVIL):ANTIG+factor(ESTCIVIL):ENDEUDA+ factor(CONTRATO)+factor(CONTRATO):SALDOREAL+factor(CONTRATO):VALOAPRO+factor(CONTRATO):NUEVSALARI+factor(CONTRATO):ANTIG+factor(CONTRATO):ENDEUDA+ factor(TIPOGARA)+factor(TIPOGARA):SALDOREAL+factor(TIPOGARA):VALOAPRO+factor(TIPOGARA):NUEVSALARI+factor(TIPOGARA):ANTIG+factor(TIPOGARA):ENDEUDA+ factor(CIA)+factor(CIA):SALDOREAL+factor(CIA):VALOAPRO+factor(CIA):NUEVSALARI+factor(CIA):ANTIG+factor(CIA):ENDEUDA+ factor(CIIU)+factor(CIIU):SALDOREAL+factor(CIIU):VALOAPRO+factor(CIIU):NUEVSALARI+factor(CIIU):ANTIG+factor(CIIU):ENDEUDA+ factor(TIPOOCU)+factor(TIPOOCU):SALDOREAL+factor(TIPOOCU):VALOAPRO+factor(TIPOOCU):NUEVSALARI+factor(TIPOOCU):ANTIG+factor(TIPOOCU):ENDEUDA+ factor(SEXO)+factor(SEXO):SALDOREAL+factor(SEXO):VALOAPRO+factor(SEXO):NUEVSALARI+factor(SEXO):ANTIG+factor(SEXO):ENDEUDA)->mod1 -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html Send "info", "help", or "[un]subscribe" (in the "body", not the subject !) To: r-help-request at stat.math.ethz.ch _._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._
I try to use "update.packages()" and it works fine, at least the packages download right. But when the packages are done it appears this message: Error in zip.unpack(pkg, lib) : cannot open file C:/rw1051/library/MASS/libs/MASS.dll What am Idoing wrong? (Yesterday it works fine!!!) platform i386-pc-mingw32 arch i386 os mingw32 system i386, mingw32 status major 1 minor 5.1 year 2002 month 06 day 17 language R -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html Send "info", "help", or "[un]subscribe" (in the "body", not the subject !) To: r-help-request at stat.math.ethz.ch _._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._
On Mon, 24 Jun 2002, Kenneth Cabrera wrote:> > I try to use "update.packages()" and it works fine, at least the > packages download right. > But when the packages are done it appears this message: > > Error in zip.unpack(pkg, lib) : cannot open file > C:/rw1051/library/MASS/libs/MASS.dll > > What am Idoing wrong? (Yesterday it works fine!!!)You have MASS loaded: Windows will not allow you to update packages which are in use (at least, those containing DLLs). Try a vanilla session (with --vanilla, for example) and update from there.> > platform i386-pc-mingw32 > arch i386 > os mingw32 > system i386, mingw32 > status > major 1 > minor 5.1 > year 2002 > month 06 > day 17 > language R > > -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- > r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html > Send "info", "help", or "[un]subscribe" > (in the "body", not the subject !) To: r-help-request at stat.math.ethz.ch > _._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._ >-- Brian D. Ripley, ripley at stats.ox.ac.uk Professor of Applied Statistics, http://www.stats.ox.ac.uk/~ripley/ University of Oxford, Tel: +44 1865 272861 (self) 1 South Parks Road, +44 1865 272860 (secr) Oxford OX1 3TG, UK Fax: +44 1865 272595 -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html Send "info", "help", or "[un]subscribe" (in the "body", not the subject !) To: r-help-request at stat.math.ethz.ch _._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._
Kenneth Cabrera wrote:> > I try to use "update.packages()" and it works fine, at least the > packages download right. > But when the packages are done it appears this message: > > Error in zip.unpack(pkg, lib) : cannot open file > C:/rw1051/library/MASS/libs/MASS.dll > > What am Idoing wrong? (Yesterday it works fine!!!)Probably you have loaded MASS with library(MASS) before and the DLL is locked by the OS. Just restart R without loading MASS and try again. Uwe Ligges> platform i386-pc-mingw32 > arch i386 > os mingw32 > system i386, mingw32 > status > major 1 > minor 5.1 > year 2002 > month 06 > day 17 > language R > > -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- > r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html > Send "info", "help", or "[un]subscribe" > (in the "body", not the subject !) To: r-help-request at stat.math.ethz.ch > _._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html Send "info", "help", or "[un]subscribe" (in the "body", not the subject !) To: r-help-request at stat.math.ethz.ch _._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._
I have a function "eval.delta" which does what I want but isn't very elegant. I have consulted the R documents, MASS, and S Programming. Is there a practical way to optimize the code? Thank you very much. Peter B. Function: eval.delta <- function(delta){ cat("VALUES\n") vlr <- NULL k <- 0 for(j in 1:length(delta)) if(delta[j] <= 2){ k <- k+1 vlr[k] <- delta[j] } cat("<= 2 (no credible evidence)\t",k,"\t",vlr,"\n") vlr <- NULL k <- 0 for(j in 1:length(delta)) if(delta[j]>2 & delta[j] <= 4){ k <- k+1 vlr[k] <- delta[j] } cat("> 2 y <= 4 (weak evidence)\t",k,"\t",vlr,"\n") vlr <- NULL k <- 0 for(j in 1:length(delta)) if(delta[j]>4 & delta[j] <= 7){ k <- k+1 vlr[k] <- delta[j] } cat("> 4 y <= 7 (definite evidence)\t",k,"\t",vlr,"\n") vlr <- NULL k <- 0 for(j in 1:length(delta)) if(delta[j]>7 & delta[j] <= 10){ k <- k+1 vlr[k] <- delta[j] } cat("> 7 y <= 10 (strong evidence)\t",k,"\t",vlr,"\n") vlr <- NULL k <- 0 for(j in 1:length(delta)) if(delta[j]>10){ k <- k+1 vlr[k] <- delta[j] } cat("> 10 (very strong evidence)\t",k,"\t",vlr,"\n") cat("\nMODELS\n") vlr <- NULL k <- 0 for(j in 1:length(delta)) if(delta[j] <= 2){ k <- k+1 vlr[k] <- j } cat("<= 2 (no credible evidence)\t",k,"\t",vlr,"\n") vlr <- NULL k <- 0 for(j in 1:length(delta)) if(delta[j]>2 & delta[j] <= 4){ k <- k+1 vlr[k] <- j } cat("> 2 y <= 4 (weak evidence)\t",k,"\t",vlr,"\n") vlr <- NULL k <- 0 for(j in 1:length(delta)) if(delta[j]>4 & delta[j] <= 7){ k <- k+1 vlr[k] <- j } cat("> 4 y <= 7 (definite evidence)\t",k,"\t",vlr,"\n") vlr <- NULL k <- 0 for(j in 1:length(delta)) if(delta[j]>7 & delta[j] <= 10){ k <- k+1 vlr[k] <- j } cat("> 7 y <= 10 (strong evidence)\t",k,"\t",vlr,"\n") vlr <- NULL k <- 0 for(j in 1:length(delta)) if(delta[j]>10){ k <- k+1 vlr[k] <- j } cat("> 10 (very strong evidence)\t",k,"\t",vlr,"\n") } Data: > delta <- c(0,1.4,2.3,4.5,2.3,8.9,12.4,6.4,7.4,11.5,2,2) Function Call and Output: > eval.delta(delta) VALUES <= 2 (no credible evidence) 4 0 1.4 2 2 > 2 y <= 4 (weak evidence) 2 2.3 2.3 > 4 y <= 7 (definite evidence) 2 4.5 6.4 > 7 y <= 10 (strong evidence) 2 8.9 7.4 > 10 (very strong evidence) 2 12.4 11.5 MODELS <= 2 (no credible evidence) 4 1 2 11 12 > 2 y <= 4 (weak evidence) 2 3 5 > 4 y <= 7 (definite evidence) 2 4 8 > 7 y <= 10 (strong evidence) 2 6 9 > 10 (very strong evidence) 2 7 10 -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html Send "info", "help", or "[un]subscribe" (in the "body", not the subject !) To: r-help-request at stat.math.ethz.ch _._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._