Chandler Carruth via llvm-dev
2018-Mar-23 10:56 UTC
[llvm-dev] RFC: Speculative Load Hardening (a Spectre variant #1 mitigation)
Hello all, I've been working for the last month or so on a comprehensive mitigation approach to variant #1 of Spectre. There are a bunch of reasons why this is desirable: - Critical software that is unlikely to be easily hand-mitigated (or where the performance tradeoff isn't worth it) will have a compelling option. - It gives us a baseline on performance for hand-mitigation. - Combined with opt-in or opt-out, it may give simpler hand-mitigation. - It is instructive to see *how* to mitigate code patterns. A detailed design document is available for commenting here: https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0/edit (I pasted this in markdown format at the bottom of the email as well.) I have also published a very early prototype patch that implements this design: https://reviews.llvm.org/D44824 This is the patch I've used to collect the performance data on the approach. It should be fairly functional but is a long way from being ready to review in detail, much less land. I'm posting so folks can start seeing the overall approach and can play with it if they want. Grab it here: Comments are very welcome! I'd like to keep the doc and this thread focused on discussion of the high-level technique for hardening, and the code review thread for discussion of the techniques used to implement this in LLVM. Thanks all! -Chandler -------- # Speculative Load Hardening ### A Spectre Variant #1 Mitigation Technique Author: Chandler Carruth - [chandlerc at google.com](mailto: chandlerc at google.com) ## Problem Statement Recently, Google Project Zero and other researchers have found information leak vulnerabilities by exploiting speculative execution in modern CPUs. These exploits are currently broken down into three variants: * GPZ Variant #1 (a.k.a. Spectre Variant #1): Bounds check (or predicate) bypass * GPZ Variant #2 (a.k.a. Spectre Variant #2): Branch target injection * GPZ Variant #3 (a.k.a. Meltdown): Rogue data cache load For more details, see the Google Project Zero blog post and the Spectre research paper: * https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html * https://spectreattack.com/spectre.pdf The core problem of GPZ Variant #1 is that speculative execution uses branch prediction to select the path of instructions speculatively executed. This path is speculatively executed with the available data, and may load from memory and leak the loaded values through various side channels that survive even when the speculative execution is unwound due to being incorrect. Mispredicted paths can cause code to be executed with data inputs that never occur in correct executions, making checks against malicious inputs ineffective and allowing attackers to use malicious data inputs to leak secret data. Here is an example, extracted and simplified from the Project Zero paper: ``` struct array { unsigned long length; unsigned char data[]; }; struct array *arr1 = ...; // small array struct array *arr2 = ...; // array of size 0x400 unsigned long untrusted_offset_from_caller = ...; if (untrusted_offset_from_caller < arr1->length) { unsigned char value = arr1->data[untrusted_offset_from_caller]; unsigned long index2 = ((value&1)*0x100)+0x200; unsigned char value2 = arr2->data[index2]; } ``` The key of the attack is to call this with `untrusted_offset_from_caller` that is far outside of the bounds once the branch predictor is trained to predict that it will be in-bounds. In that case, the body of the `if` will be executed speculatively, and may read secret data into `value` and leak it via a cache-timing side channel when a dependent access is made to populate `value2`. ## High Level Mitigation Approach While several approaches are being actively pursued to mitigate specific branches and/or loads inside especially risky software (most notably various OS kernels), these approaches require manual and/or static analysis aided auditing of code and explicit source changes to apply the mitigation. They are unlikely to scale well to large applications. We are proposing a comprehensive mitigation approach that would apply automatically across an entire program rather than through manual changes to the code. While this is likely to have a high performance cost, some applications may be in a good position to take this performance / security tradeoff. The specific technique we propose is to cause loads to be checked using branchless code to ensure that they are executing along a valid control flow path. Consider the following C-pseudo-code representing the core idea of a predicate guarding potentially invalid loads: ``` void leak(int data); void example(int* pointer1, int* pointer2) { if (condition) { // ... lots of code ... leak(*pointer1); } else { // ... more code ... leak(*pointer2); } } ``` This would get transformed into something resembling the following: ``` uintptr_t all_ones_mask = std::numerical_limits<uintptr_t>::max(); uintptr_t all_zeros_mask = 0; void leak(int data); void example(int* pointer1, int* pointer2) { uintptr_t predicate_state = all_ones_mask; if (condition) { predicate_state = !condition ? all_zeros_mask : predicate_state; // ... lots of code ... // // Harden the pointer so it can't be loaded pointer1 &= predicate_state; leak(*pointer1); } else { predicate_state = condition ? all_zeros_mask : predicate_state; // ... more code ... // // Alternative: Harden the loaded value int value2 = *pointer2 & predicate_state; leak(value2); } } ``` The result should be that if the `if (condition) {` branch is mis-predicted, there is a *data* dependency on the condition used to zero out any pointers prior to loading through them or to zero out all of the loaded bits. Even though this code pattern may still execute speculatively, *invalid* speculative executions are prevented from leaking secret data from memory (but note that this data might still be loaded in safe ways, and some regions of memory are required to not hold secrets, see below for detailed limitations). This approach only requires the underlying hardware have a way to implement a branchless and unpredicted conditional update of a register's value. All modern architectures have support for this, and in fact such support is necessary to correctly implement constant time cryptographic primitives. Crucial properties of this approach: * It does not attempt to prevent any particular side-channel from working. This is important as there are an unknown number of potential side channels and we expect to continue discovering more. Instead, it prevents the read of secret data in the first place. * It accumulates the predicate state, protecting even in the face of nested *correctly* predicted control flows. * It uses a *destructive* or *non-reversible* modification of the address loaded to prevent an attacker from reversing the check using attacker-controlled offsets to the pointer. * It does not completely block speculative execution, and merely prevents *mis*-speculated paths from leaking secrets from memory (and stalls speculation until this can be determined). * It is completely general and makes no fundamental assumptions about the underlying architecture other than the ability to do branchless conditional data updates and a lack of value prediction. * It does not require programmers to identify all possible secret data or information leaks. Limitations of this approach: * It requires re-compiling source code to insert hardening instruction sequences. Only software compiled in this mode is protected. * The performance is heavily dependent on a particular architecture's implementation strategy. We outline a potential x86 implementation below and characterize its performance. * It does not defend against secret data already loaded from memory and residing in registers. Code dealing with this, e.g cryptographic routines, already have patterns to scrub registers of secret data, but these patterns must also be made unconditional. * To achieve reasonable performance, many loads may not be checked, such as those with compile-time fixed addresses. This primarily consists of accesses at compile-time constant offsets of global and local variables. Code which needs this protection and intentionally stores secret data must ensure the memory regions used for secret data are necessarily dynamic mappings or heap allocations. This is an area which can be tuned to provide more comprehensive protection at the cost of performance. * Hardened loads may still load valid addresses if not attacker-controlled addresses. To prevent these from reading secret data, the low 2gb of the address space and 2gb above and below any executable pages should be protected. Credit: * The core idea of tracing mis-speculation through data and marking pointers to block mis-speculated loads was developed as part of a HACS 2018 discussion with several individuals. * Core idea of masking out loaded bits was part of the original mitigation suggested by Jann Horn when these attacks were reported. ### Indirect Branches, Calls, and Returns It is possible to attack control flow other than conditional branches with variant #1 style mispredictions. * A prediction towards a hot call target of a virtual method can lead to it being speculatively executed when an expected type is used (often called "type confusion"). * A hot case may be speculatively executed due to prediction instead of the correct case for a switch statement implemented as a jump table. * A hot common return address may be predicted incorrectly when returning from a function. These code patterns are also vulnerable to Spectre variant #2, and as such are best mitigated with a [retpoline](https://support.google.com/faqs/answer/7625886) on x86 platforms. When a mitigation technique like retpoline is used, speculation simply cannot proceed through an indirect control flow edge (or it cannot be mispredicted in the case of a filled RSB) and so it is also protected from variant #1 style attacks. However, some architectures, micro-architectures, or vendors do not employ the retpoline mitigation, and on future x86 hardware (both Intel and AMD) it is expected to become unnecessary due to hardware-based mitigation. When not using a retpoline, these edges will need independent protection from variant #1 style attacks. The analogous approach to that used for conditional control flow should work: ``` uintptr_t all_ones_mask = std::numerical_limits<uintptr_t>::max(); uintptr_t all_zeros_mask = 0; void leak(int data); void example(int* pointer1, int* pointer2) { uintptr_t predicate_state = all_ones_mask; switch (condition) { case 0: predicate_state = (condition != 0) ? all_zeros_mask : predicate_state; // ... lots of code ... // // Harden the pointer so it can't be loaded pointer1 &= predicate_state; leak(*pointer1); break; case 1: predicate_state = (condition != 1) ? all_zeros_mask : predicate_state; // ... more code ... // // Alternative: Harden the loaded value int value2 = *pointer2 & predicate_state; leak(value2); break; // ... } } ``` The core idea remains the same: validate the control flow using data-flow and use that validation to check that loads cannot leak information along misspeculated paths. Typically this involves passing the desired target of such control flow across the edge and checking that it is correct afterwards. Note that while it is tempting to think that this mitigates variant #2 attacks, it does not. Those attacks go to arbitrary gadgets that don't include the checks. ## Implementation Details There are a number of complex details impacting the implementation of this technique, both on a particular architecture and within a particular compiler. We discuss proposed implementation techniques for the x86 architecture and the LLVM compiler. These are primarily to serve as an example, as other implementation techniques are very possible. ### x86 Implementation Details On the x86 platform we break down the implementation into three core components: accumulating the predicate state through the control flow graph, checking the loads, and checking control transfers between procedures. #### Accumulating Predicate State Consider baseline x86 instructions like the following, which test three conditions and if all pass, loads data from memory and potentially leaks it through some side channel: ``` # %bb.0: # %entry pushq %rax testl %edi, %edi jne .LBB0_4 # %bb.1: # %then1 testl %esi, %esi jne .LBB0_4 # %bb.2: # %then2 testl %edx, %edx je .LBB0_3 .LBB0_4: # %exit popq %rax retq .LBB0_3: # %danger movl (%rcx), %edi callq leak popq %rax retq ``` When we go to speculatively execute the load, we want to know whether any of the dynamically executed predicates have been mis-speculated. To track that, along each conditional edge, we need to track the data which would allow that edge to be taken. On x86, this data is stored in the flags register used by the conditional jump instruction. Along both edges after this fork in control flow, the flags register remains alive and contains data that we can use to build up our accumulated predicate state. We accumulate it using the x86 conditional move instruction which also reads the flag registers where the state resides. These conditional move instructions are known to not be predicted on any x86 processors, making them immune to misprediction that could reintroduce the vulnerability. When we insert the conditional moves, the code ends up looking like the following: ``` # %bb.0: # %entry pushq %rax xorl %eax, %eax # Zero out initial predicate state. movq $-1, %r8 # Put all-ones mask into a register. testl %edi, %edi jne .LBB0_1 # %bb.2: # %then1 cmovneq %r8, %rax # Conditionally update predicate state. testl %esi, %esi jne .LBB0_1 # %bb.3: # %then2 cmovneq %r8, %rax # Conditionally update predicate state. testl %edx, %edx je .LBB0_4 .LBB0_1: cmoveq %r8, %rax # Conditionally update predicate state. popq %rax retq .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. ... ``` Here we create the "empty" or "correct execution" predicate state by zeroing `%rax`, and we create a constant "incorrect execution" predicate value by putting `-1` into `%r8`. Then, along each edge coming out of a conditional branch we do a conditional move that in a correct execution will be a no-op, but if mis-speculated, will replace the `%rax` with the value of `%r8`. Misspeculating any one of the three predicates will cause `%rax` to hold the "incorrect execution" value from `%r8` as we preserve incoming values when execution is correct rather than overwriting it. We now have a value in `%rax` in each basic block that indicates if at some point previously a predicate was mispredicted. And we have arranged for that value to be particularly effective when used below to harden loads. ##### Indirect Call, Branch, and Return Predicates (Not yet implemented.) There is no analogous flag to use when tracing indirect calls, branches, and returns. The predicate state must be accumulated through some other means. Fundamentally, this is the reverse of the problem posed in CFI: we need to check where we came from rather than where we are going. For function-local jump tables, this is easily arranged by testing the input to the jump table within each destination: ``` pushq %rax xorl %eax, %eax # Zero out initial predicate state. movq $-1, %r8 # Put all-ones mask into a register. jmpq *.LJTI0_0(,%rdi,8) # Indirect jump through table. .LBB0_2: # %sw.bb testq $0, %rdi # Validate index used for jump table. cmovneq %r8, %rax # Conditionally update predicate state. ... jmp _Z4leaki # TAILCALL .LBB0_3: # %sw.bb1 testq $1, %rdi # Validate index used for jump table. cmovneq %r8, %rax # Conditionally update predicate state. ... jmp _Z4leaki # TAILCALL .LBB0_5: # %sw.bb10 testq $2, %rdi # Validate index used for jump table. cmovneq %r8, %rax # Conditionally update predicate state. ... jmp _Z4leaki # TAILCALL ... .section .rodata,"a", at progbits .p2align 3 .LJTI0_0: .quad .LBB0_2 .quad .LBB0_3 .quad .LBB0_5 ... ``` Returns have a simple mitigation technique on x86-64 (or other ABIs which have what is called a "red zone" region beyond the end of the stack). This region is guaranteed to be preserved across interrupts and context switches, making the return address used in returning to the current code remain on the stack and valid to read. We can emit code in the caller to verify that a return edge was not mispredicted: ``` callq other_function return_addr: testq -8(%rsp), return_addr # Validate return address. cmovneq %r8, %rax # Update predicate state. ``` For an ABI without a "red zone" (and thus unable to read the return address from the stack), mitigating returns face similar problems to calls below. Indirect calls (and returns in the absence of a red zone ABI) pose the most significant challenge to propagate. The simplest technique would be to define a new ABI such that the intended call target is passed into the called function and checked in the entry. Unfortunately, new ABIs are quite expensive to deploy in C and C++. While the target function could be passed in TLS, we would still require complex logic to handle a mixture of functions compiled with and without this extra logic (essentially, making the ABI backwards compatible). Currently, we suggest using retpolines here and will continue to investigate ways of mitigating this. ##### Optimizations, Alternatives, and Tradeoffs Merely accumulating predicate state involves significant cost. There are several key optimizations we employ to minimize this and various alternatives that present different tradeoffs in the generated code. First, we work to reduce the number of instructions used to track the state: * Rather than inserting a `cmovCC` instruction along every conditional edge in the original program, we track each set of condition flags we need to capture prior to entering each basic block and reuse a common `cmovCC` sequence for those. * We could further reuse suffixes when there are multiple `cmovCC` instructions required to capture the set of flags. Currently this is believed to not be worth the cost as paired flags are relatively rare and suffixes of them are exceedingly rare. * A common pattern in x86 is to have multiple conditional jump instructions that use the same flags but handle different conditions. Naively, we could consider each fallthrough between them an "edge" but this causes a much more complex control flow graph. Instead, we accumulate the set of conditions necessary for fallthrough and use a sequence of `cmovCC` instructions in a single fallthrough edge to track it. Second, we trade register pressure for simpler `cmovCC` instructions by allocating a register for the "bad" state. We could read that value from memory as part of the conditional move instruction, however, this creates more micro-ops and requires the load-store unit to be involved. Currently, we place the value into a virtual register and allow the register allocator to decide when the register pressure is sufficient to make it worth spilling to memory and reloading. #### Hardening Loads Once we have the predicate accumulated into a special value for correct vs. mis-speculated, we need to apply this to loads in a way that ensures they do not leak secret data. There are two primary techniques for this: we can either harden the loaded value to prevent observation, or we can harden the address itself to prevent the load from occuring. These have significantly different performance tradeoffs. ##### Hardening loaded values The most appealing way to harden loads is to mask out all of the bits loaded. The key requirement is that for each bit loaded, along the mis-speculated path that bit is always fixed at either 0 or 1 regardless of the value of the bit loaded. The most obvious implementation uses either an `and` instruction with an all-zero mask along mis-speculated paths and an all-one mask along correct paths, or an `or` instruction with an all-one mask along mis-speculated paths and an all-zero mask along correct paths. Other options become less appealing such as multiplying by zero or one, or multiple shift instructions. For reasons we elaborate on below, we end up suggesting you use `or` with an all-ones mask, making the x86 instruction sequence look like the following: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. movl (%rsi), %edi # Load potentially secret data from %rsi. orl %eax, %edi ``` Other useful patterns may be to fold the load into the `or` instruction itself at the cost of a register-to-register copy. There are some challenges with deploying this approach: 1. Many loads on x86 are folded into other instructions. Separating them would add very significant and costly register pressure with prohibitive performance cost. 2. Loads may not target a general purpose register requiring extra instructions to map the state value into the correct register class, and potentially more expensive instructions to mask the value in some way. 3. The flags registers on x86 are very likely to be live, and challenging to preserve cheaply. 4. There are many more values loaded than pointers & indices used for loads. As a consequence, hardening the result of a load requires substantially more instructions than hardening the address of the load (see below). Despite these challenges, hardening the result of the load critically allows the load to proceed and thus has dramatically less impact on the total speculative / out-of-order potential of the execution. There are also several interesting techniques to try and mitigate these challenges and make hardening the results of loads viable in at least some cases. However, we generally expect to fall back when unprofitable from hardening the loaded value to the next approach of hardening the address itself. ###### Loads folded into data-invariant operations can be hardened after the operation The first key to making this feasible is to recognize that many operations on x86 are "data-invariant". That is, they have no (known) observable behavior differences due to the particular input data. These instructions are often used when implementing cryptographic primitives dealing with private key data because they are not believed to provide any side-channels. Similarly, we can defer hardening until after them as they will not in-and-of-themselves introduce a speculative execution side-channel. This results in code sequences that look like: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. addl (%rsi), %edi # Load and accumulate without leaking. orl %eax, %edi ``` While an addition happens to the loaded (potentially secret) value, that doesn't leak any data and we then immediately harden it. ###### Hardening of loaded values deferred down the data-invariant expression graph We can generalize the previous idea and sink the hardening down the expression graph across as many data-invariant operations as desirable. This can use very conservative rules for whether something is data-invariant. The primary goal should be to handle multiple loads with a single hardening instruction: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. addl (%rsi), %edi # Load and accumulate without leaking. addl 4(%rsi), %edi # Continue without leaking. addl 8(%rsi), %edi orl %eax, %edi # Mask out bits from all three loads. ``` ###### Preserving the flags while hardening loaded values on Haswell, Zen, and newer processors Sadly, there are no useful instructions on x86 that apply a mask to all 64 bits without touching the flag registers. However, we can harden loaded values that are narrower than a word (fewer than 32-bits on 32-bit systems and fewer than 64-bits on 64-bit systems) by zero-extending the value to the full word size and then shifting right by at least the number of original bits using the BMI2 `shrx` instruction: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. addl (%rsi), %edi # Load and accumulate 32 bits of data. shrxq %rax, %rdi, %rdi # Shift out all 32 bits loaded. ``` Because on x86 the zero-extend is free, this can efficiently harden the loaded value. ##### Hardening the address of the load When hardening the loaded value is inapplicable, most often because the instruction directly leaks information (like `cmp` or `jmpq`), we switch to hardening the _address_ of the load instead of the loaded value. This avoids increasing register pressure by unfolding the load or paying some other high cost. To understand how this works in practice, we need to examine the exact semantics of the x86 addressing modes which, in its fully general form, looks like `(%base,%index,scale)offset`. Here `%base` and `%index` are 64-bit registers that can potentially be any value, and may be attacker controlled, and `scale` and `offset` are fixed immediate values. `scale` must be `1`, `2`, `4`, or `8`, and `offset` can be any 32-bit sign extended value. The exact computation performed to find the address is then: `%base + (scale * %index) + offset` under 64-bit 2's complement modular arithmetic. One issue with this approach is that, after hardening, the `%base + (scale * %index)` subexpression will compute a value near zero (`-1 + (scale * -1)`) and then a large, positive `offset` will index into memory within the first two gigabytes of address space. While these offsets are not attacker controlled, the attacker could chose to attack a load which happens to have the desired offset and then successfully read memory in that region. This significantly raises the burden on the attacker and limits the scope of attack but does not eliminate it. To fully close the attack we must work with the operating system to preclude mapping memory in the low two gigabytes of address space. ###### 64-bit load checking instructions We can use the following instruction sequences to check loads. We set up `%r8` in these examples to hold the special value of `-1` which will be `cmov`ed over `%rax` in mis-speculated paths. Single register addressing mode: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. orq %rax, %rsi # Mask the pointer if misspeculating. movl (%rsi), %edi ``` Two register addressing mode: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. orq %rax, %rsi # Mask the pointer if misspeculating. orq %rax, %rcx # Mask the index if misspeculating. movl (%rsi,%rcx), %edi ``` This will result in a negative address near zero or in `offset` wrapping the address space back to a small positive address. Small, negative addresses will fault in user-mode for most operating systems, but targets which need the high address space to be user accessible may need to adjust the exact sequence used above. Additionally, the low addresses will need to be marked unreadable by the OS to fully harden the load. ###### RIP-relative addressing is even easier to break There is a common addressing mode idiom that is substantially harder to check: addressing relative to the instruction pointer. We cannot change the value of the instruction pointer register and so we have the harder problem of forcing `%base + scale * %index + offset` to be an invalid address, by *only* changing `%index`. The only advantage we have is that the attacker also cannot modify `%base`. If we use the fast instruction sequence above, but only apply it to the index, we will always access `%rip + (scale * -1) + offset`. If the attacker can find a load which with this address happens to point to secret data, then they can reach it. However, the loader and base libraries can also simply refuse to map the heap, data segments, or stack within 2gb of any of the text in the program, much like it can reserve the low 2gb of address space. ###### The flag registers again make everything hard Unfortunately, the technique of using `orq`-instructions has a serious flaw on x86. The very thing that makes it easy to accumulate state, the flag registers containing predicates, causes serious problems here because they may be alive and used by the loading instruction or subsequent instructions. On x86, the `orq` instruction **sets** the flags and will override anything already there. This makes inserting them into the instruction stream very hazardous. Unfortunately, unlike when hardening the loaded value, we have no fallback here and so we must have a fully general approach available. The first thing we must do when generating these sequences is try to analyze the surrounding code to prove that the flags are not in fact alive or being used. Typically, it has been set by some other instruction which just happens to set the flags register (much like ours!) with no actual dependency. In those cases, it is safe to directly insert these instructions. Alternatively we may be able to move them earlier to avoid clobbering the used value. However, this may ultimately be impossible. In that case, we need to preserve the flags around these instructions: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. pushfq orq %rax, %rcx # Mask the pointer if misspeculating. orq %rax, %rdx # Mask the index if misspeculating. popfq movl (%rcx,%rdx), %edi ``` Using the `pushf` and `popf` instructions saves the flags register around our inserted code, but comes at a high cost. First, we must store the flags to the stack and reload them. Second, this causes the stack pointer to be adjusted dynamically, requiring a frame pointer be used for referring to temporaries spilled to the stack, etc. On newer x86 processors we can use the `lahf` and `sahf` instructions to save all of the flags besides the overflow flag in a register rather than on the stack. We can then use `seto` and `add` to save and restore the overflow flag in a register. Combined, this will save and restore flags in the same manner as above but using two registers rather than the stack. That is still very expensive if slightly less expensive than `pushf` and `popf` in most cases. ###### A flag-less alternative on Haswell, Zen and newer processors Starting with the BMI2 x86 instruction set extensions available on Haswell and Zen processors, there is an instruction for shifting that does not set any flags: `shrx`. We can use this and the `lea` instruction to implement analogous code sequences to the above ones. However, these are still very marginally slower, as there are fewer ports able to dispatch shift instructions in most modern x86 processors than there are for `or` instructions. Fast, single register addressing mode: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. shrxq %rax, %rsi, %rsi # Shift away bits if misspeculating. movl (%rsi), %edi ``` This will collapse the register to zero or one, and everything but the offset in the addressing mode to be less than or equal to 9. This means the full address can only be guaranteed to be less than `(1 << 31) + 9`. The OS may wish to protect an extra page of the low address space to account for this ##### Optimizations A very large portion of the cost for this approach comes from checking loads in this way, so it is important to work to optimize this. However, beyond making the instruction sequences to *apply* the checks efficient (for example by avoiding `pushfq` and `popfq` sequences), the only significant optimization is to check fewer loads without introducing a vulnerability. We apply several techniques to accomplish that. ###### Don't check loads from compile-time constant stack offsets We implement this optimization on x86 by skipping the checking of loads which use a fixed frame pointer offset. The result of this optimization is that patterns like reloading a spilled register or accessing a global field don't get checked. This is a very significant performance win. ###### Don't check dependent loads A core part of why this mitigation strategy works is that it establishes a data-flow check on the loaded address. However, this means that if the address itself was already loaded using a checked load, there is no need to check a dependent load provided it is within the same basic block as the checked load, and therefore has no additional predicates guarding it. Consider code like the following: ``` ... .LBB0_4: # %danger movq (%rcx), %rdi movl (%rdi), %edx ``` This will get transformed into: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. orq %rax, %rcx # Mask the pointer if misspeculating. movq (%rcx), %rdi # Hardened load. movl (%rdi), %edx # Unhardened load due to dependent addr. ``` This doesn't check the load through `%rdi` as that pointer is dependent on a checked load already. ###### Protect large, load-heavy blocks with a single lfence It may be worth using a single `lfence` instruction at the start of a block which begins with a (very) large number of loads that require independent protection *and* which require hardening the address of the load. However, this is unlikely to be profitable in practice. The latency hit of the hardening would need to exceed that of an `lfence` when *correctly* speculatively executed. But in that case, the `lfence` cost is a complete loss of speculative execution (at a minimum). So far, the evidence we have of the performance cost of using `lfence` indicates few if any hot code patterns where this trade off would make sense. ###### Tempting optimizations that break the security model Several optimizations were considered which didn't pan out due to failure to uphold the security model. One in particular is worth discussing as many others will reduce to it. We wondered whether only the *first* load in a basic block could be checked. If the check works as intended, it forms an invalid pointer that doesn't even virtual-address translate in the hardware. It should fault very early on in its processing. Maybe that would stop things in time for the mis-speculated path to fail to leak any secrets. This doesn't end up working because the processor is fundamentally out-of-order, even in its speculative domain. As a consequence, the attacker could cause the initial address computation itself to stall and allow an arbitrary number of unrelated loads (including attacked loads of secret data) to pass through. #### Interprocedural Checking Modern x86 processors may speculate into called functions and out of functions to their return address. As a consequence, we need a way to check loads that occur after a mis-speculated predicate but where the load and the mis-speculated predicate are in different functions. In essence, we need some interprocedural generalization of the predicate state tracking. A primary challenge to passing the predicate state between functions is that we would like to not require a change to the ABI or calling convention in order to make this mitigation more deployable, and further would like code mitigated in this way to be easily mixed with code not mitigated in this way and without completely losing the value of the mitigation. ##### Embed the predicate state into the high bit(s) of the stack pointer We can use the same technique that allows hardening pointers to pass the predicate state into and out of functions. The stack pointer is trivially passed between functions and we can test for it having the high bits set to detect when it has been marked due to mis-speculation. The callsite instruction sequence looks like (assuming a mis-speculated state value of `-1`): ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. shlq $47, %rax orq %rax, %rsp callq other_function movq %rsp, %rax sarq 63, %rax # Sign extend the high bit to all bits. ``` This first puts the predicate state into the high bits of `%rsp` before calling the function and then reads it back out of high bits of `%rsp` afterward. When correctly executing (speculatively or not), these are all no-ops. When misspeculating, the stack pointer will end up negative. We arrange for it to remain a canonical address, but otherwise leave the low bits alone to allow stack adjustments to proceed normally without disrupting this. Within the called function, we can extract this predicate state and then reset it on return: ``` other_function: # prolog callq other_function movq %rsp, %rax sarq 63, %rax # Sign extend the high bit to all bits. # ... .LBB0_N: cmovneq %r8, %rax # Conditionally update predicate state. shlq $47, %rax orq %rax, %rsp retq ``` This approach is effective when all code is mitigated in this fashion, and can even survive very limited reaches into unmitigated code (the state will round-trip in and back out of an unmitigated function, it just won't be updated). But it does have some limitations. There is a cost to merging the state into `%rsp` and it doesn't insulate mitigated code from mis-speculation in an unmitigated caller. ##### Rewrite API of internal functions to directly propagate predicate state (Not yet implemented.) We have the option with internal functions to directly adjust their API to accept the predicate as an argument and return it. This is likely to be marginally cheaper than embedding into `%rsp` for entering functions. ##### Use `lfence` to guard function transitions We know that an `lfence` instruction can be used to block speculation completely and so we can use this stronger mitigation between functions. We emit it in the entry block to handle calls, and prior to each return. This approach also has the advantage of providing the strongest degree of mitigation when mixed with unmitigated code by halting all mis-speculation entering a function which is mitigated, regardless of what occured in the caller. However, experimental results indicate that the performance overhead of this approach is very high for certain patterns of code. A classic example is any form of recursive evaluation engine. The hot, rapid call and return sequences exhibit dramatic performance loss when mitigated with `lfence`. This component alone can regress performance by 2x or more. ##### Use an internal TLS location to pass predicate state We can define a special thread-local value to hold the predicate state between functions. This avoids direct ABI implications by using a side channel between callers and callees to communicate the predicate state. It also allows implicit zero-initialization of the state, which allows non-checked code to be the first code executed. However, this requires a load from TLS in the entry block, a store to TLS before every call and every ret, and a load from TLS after every call. As a consequence it is expected to be substantially more expensive even than using `%rsp` and potentially `lfence` within the function entry block. ##### Define a new ABI and/or calling convention We could define a new ABI and/or calling convention to explicitly pass the predicate state in and out of functions. This may be interesting if none of the alternatives have adequate performance, but it makes deployment and adoption dramatically more complex, and potentially infeasible. ## Alternative Mitigation Strategies [Most](https://lwn.net/Articles/743265/) [discussion](https://lwn.net/Articles/744287/) on mitigating variant 1 attacks focuses on mitigating specific known attackable components in the Linux kernel (or other kernels) by manually rewriting the code to contain an instruction sequence that is not vulnerable. For x86 systems this is done by either injecting an `lfence` instruction along the code path which would leak data if executed speculatively or by rewriting memory accesses to have branch-less masking to a known safe region. On Intel systems, `lfence` [will prevent the speculative load of secret data]( https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf ). On AMD systems `lfence` is currently a no-op, but can be made dispatch-serializing by setting an MSR, and thus preclude mis-speculation of the code path ([mitigation G-2 + V1-1]( https://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf) ). However, this relies on finding and enumerating all possible points in code which could be attacked to leak information. While in some cases static analysis is effective at doing this at scale, in many cases it still relies on human judgement to evaluate whether code might be vulnerable. Especially for software systems which receive less detailed scrutiny but remain sensitive to these attacks, this seems like an impractical security model. We need an automatic and systematic mitigation strategy. ### Automatic `lfence` on Conditional Edges A natural way to scale up the existing hand-coded mitigations is simply to inject an `lfence` instruction into both the target and fallthrough destinations of every conditional branch. This ensures that no predicate or bounds check can be bypassed speculatively. However, the performance overhead of this approach is, simply put, catastrophic. Yet it remains the only truly "secure by default" approach known prior to this effort and serves as the baseline for performance. One attempt to address the performance overhead of this and make it more realistic to deploy is [MSVC's /Qspectre switch]( https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/ ). Their technique is to use static analysis within the compiler to only insert `lfence` instructions into conditional edges at risk of attack. However, initial analysis (still under embargo) has shown that this analysis is incomplete and only catches a small and limited subset of attackable patterns which happen to resemble very closely the initial proofs of concept. As such, while its performance is acceptable, it does not appear to be an adequate systematic mitigation. ## Performance Overhead The performance overhead of this style of comprehensive mitigation is very high. However, it compares very favorably with previously recommended approaches such as the `lfence` instruction. Just as users can restrict the scope of `lfence` to control its performance impact, this mitigation technique could be restricted in scope as well. However, it is important to understand what it would cost to get a fully mitigated baseline. Here we assume targeting a Haswell (or newer) processor and using all of the tricks to improve performance (so leaves the low 2gb unprotected and +/- 2gb surrounding any PC in the program). We ran both Google's microbenchmark suite and a large highly-tuned server built using ThinLTO and PGO. All were built with `-march=haswell` to give access to BMI2 instructions, and benchmarks were run on large Haswell servers. We collected data both with an `lfence`-based mitigation and load hardening as presented here. The summary is that mitigating with load hardening is 1.77x faster than mitigating with `lfence`, and the overhead of load hardening compared to a normal program is likely between a 10% overhead and a 50% overhead with most large applications seeing a 30% overhead or less. | Benchmark | `lfence` | Load Hardening | Mitigated Speedup | | -------------------------------------- | -------: | -------------: | ----------------: | | Google microbenchmark suite | -74.8% | -36.4% | **2.5x** | | Large server QPS (using ThinLTO & PGO) | -62% | -29% | **1.8x** | Below is a visualization of the microbenchmark suite results which hels show the distribution of results that is somewhat lost in the summary. The y-axis is a log-scale speedup ratio of load hardening relative to `lfence` (up -> faster -> better). Each box-and-whiskers represents one microbenchmark which may have many different metrics measured. The red line marks the median, the box marks the first and third quartiles, and the whiskers mark the min and max. ![Microbenchmark result visualization](speculative_load_hardening_microbenchmarks.png) We don't yet have benchmark data on SPEC or the LLVM test suite, but we can work on getting that. Still, the above should give a pretty clear characterization of the performance, and specific benchmarks are unlikely to reveal especially interesting properties. ### Future Work: Fine Grained Control and API-Integration The performance overhead of this technique is likely to be very significant and something users wish to control or reduce. There are interesting options here that impact the implementation strategy used. One particularly appealing option is to allow both opt-in and opt-out of this mitigation at reasonably fine granularity such as on a per-function basis, including intelligent handling of inlining decisions -- protected code can be prevented from inlining into unprotected code, and unprotected code will become protected when inlined into protected code. For systems where only a limited set of code is reachable by externally controlled inputs, it may be possible to limit the scope of mitigation through such mechanisms without compromising the application's overall security. The performance impact may also be focused in a few key functions that can be hand-mitigated in ways that have lower performance overhead while the remainder of the application receives automatic protection. For both limiting the scope of mitigation or manually mitigating hot functions, there needs to be some support for mixing mitigated and unmitigated code without completely defeating the mitigation. For the first use case, it would be particularly desirable that mitigated code remains safe when being called during mis-speculation from unmitigated code. For the second use case, it may be important to connect the automatic mitigation technique to explicit mitigation APIs such as what is described in http://wg21.link/p0928 (or any other eventual API) so that there is a clean way to switch from automatic to manual mitigation without immediately exposing a hole. However, the design for how to do this is hard to come up with until the APIs are better established. We will revisit this as those APIs mature. -------------- next part -------------- An HTML attachment was scrubbed... URL: <http://lists.llvm.org/pipermail/llvm-dev/attachments/20180323/e2a0e3c4/attachment-0001.html>
Kristof Beyls via llvm-dev
2018-Apr-05 09:07 UTC
[llvm-dev] RFC: Speculative Load Hardening (a Spectre variant #1 mitigation)
Hi Chandler, Thank you very much for sharing this! The RFC is pretty lengthy but the far majority of it makes sense to me. I’m sure I’m forgetting to react to some aspects below, but I thought I’d summarize some initial thoughts and questions I had after reading the RFC end-to-end. * I believe the same high-level principles you outline can also be used to implement the same protection on the Arm instruction sets (AArch64 and AArch32). The technique you describe is dependent on being able to do an “unpredicted conditional update of a register's value". For the Arm architecture, the guarantee for the conditional update to be unpredicted can come from using the new CSDB instruction – see documentation at https://developer.arm.com/support/security-update/download-the-whitepaper. * It seems you suggest 2 ways to protect against side-channel attacks leaking speculatively-loaded secret data: either protect by zero-ing out address bits that may represent secret data, or zero-ing out loaded data. In the first case (zero-ing out address bits) – wouldn’t you have to apply that to addresses used in stores too, next to addresses used in loads? * IIUC, you state that constant-offset stack locations and global variables don’t need protection. For option 1 (zero-ing out the address bit that may represent secret data) – I can understand the rationale for why constant offset stack locations and global variables don’t need protection. But I’m wondering what the detailed rationale is for not needing protection on option 2 (zero-ing out the value loaded): what guarantees that no secret info can be located on the stack or in a global variable? Or did I misunderstand the proposal? * For x86 specifically, you explain how the low 2gb and high 2gb of address space should be protected by the OS. I wonder if this +-2gb range could be reduced sharply by letting the compiler not generate 32 bit constant offsets in address calculations, but at most a much smaller constant offset? I assume limiting that may have only a very small effect on code quality – and might potentially ease the requirements on the OS? Thanks! Kristof On 23 Mar 2018, at 11:56, Chandler Carruth via llvm-dev <llvm-dev at lists.llvm.org<mailto:llvm-dev at lists.llvm.org>> wrote: Hello all, I've been working for the last month or so on a comprehensive mitigation approach to variant #1 of Spectre. There are a bunch of reasons why this is desirable: - Critical software that is unlikely to be easily hand-mitigated (or where the performance tradeoff isn't worth it) will have a compelling option. - It gives us a baseline on performance for hand-mitigation. - Combined with opt-in or opt-out, it may give simpler hand-mitigation. - It is instructive to see *how* to mitigate code patterns. A detailed design document is available for commenting here: https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0/edit (I pasted this in markdown format at the bottom of the email as well.) I have also published a very early prototype patch that implements this design: https://reviews.llvm.org/D44824 This is the patch I've used to collect the performance data on the approach. It should be fairly functional but is a long way from being ready to review in detail, much less land. I'm posting so folks can start seeing the overall approach and can play with it if they want. Grab it here: Comments are very welcome! I'd like to keep the doc and this thread focused on discussion of the high-level technique for hardening, and the code review thread for discussion of the techniques used to implement this in LLVM. Thanks all! -Chandler …. -------------- next part -------------- An HTML attachment was scrubbed... URL: <http://lists.llvm.org/pipermail/llvm-dev/attachments/20180405/23259e4f/attachment.html>
Chandler Carruth via llvm-dev
2018-Apr-05 09:17 UTC
[llvm-dev] RFC: Speculative Load Hardening (a Spectre variant #1 mitigation)
On Thu, Apr 5, 2018 at 2:07 AM Kristof Beyls <Kristof.Beyls at arm.com> wrote:> Hi Chandler, > > Thank you very much for sharing this! > > The RFC is pretty lengthy but the far majority of it makes sense to me. > I’m sure I’m forgetting to react to some aspects below, but I thought I’d > summarize some initial thoughts and questions I had after reading the RFC > end-to-end. > > * I believe the same high-level principles you outline can also be used to > implement the same protection on the Arm instruction sets (AArch64 > and AArch32). The technique you describe is dependent on being able to do > an “unpredicted conditional update of a register's value". For the Arm > architecture, the guarantee for the conditional update to be unpredicted > can come from using the new CSDB instruction – see documentation at > https://developer.arm.com/support/security-update/download-the-whitepaper. >I think even without this the practical guarantee can be met. But let's discuss that off line and in more depth as it doesn't have *too* much to do with the compiler side of this and is really just an ARM architecture question.> > * It seems you suggest 2 ways to protect against side-channel attacks > leaking speculatively-loaded secret data: either protect by zero-ing > out address bits that may represent secret data, or zero-ing out loaded > data. In the first case (zero-ing out address bits) – wouldn’t you have > to apply that to addresses used in stores too, next to addresses used in > loads? >Stores don't intrinsically leak data. Specifically, if you have never loaded secret data, nothing you store can leak secret data. 1) You can't be storing the secret data itself, you never loaded it. 2) You can't be storing to an address influenced by the secret data, that too would require loading it. So once loads are hardened, stores shouldn't matter.> > * IIUC, you state that constant-offset stack locations and global > variables don’t need protection. For option 1 (zero-ing out the address bit > that may represent secret data) – I can understand the rationale for why > constant offset stack locations and global variables don’t need > protection. But I’m wondering what the detailed rationale is for not > needing protection on option 2 (zero-ing out the value loaded): what > guarantees that no secret info can be located on the stack or in a global > variable? Or did I misunderstand the proposal? >It isn't that we don't *need* protection. It is that e don't *provide* protection and insist programs keep their secret data elsewhere. This will certainly require changes to software to achieve. But without this, the performance becomes much worse because of reloads of spilled registers and such being impacted. Plus, it would preclude the address based approach.> > * For x86 specifically, you explain how the low 2gb and high 2gb of > address space should be protected by the OS. I wonder if this +-2gb range > could be reduced sharply by letting the compiler not generate 32 bit > constant offsets in address calculations, but at most a much smaller > constant offset? I assume limiting that may have only a very small effect > on code quality – and might potentially ease the requirements on the OS? >Yes. Specifically, this seems like the only viable path for 32-bit architectures. I freely admit my only focus was on a 64-bit architecture and so I didn't really spend any time on this. For a 64-bit architecture, 2gb is as easy to protect as a smaller region, so it seems worth keeping the performance.> > > Thanks! > > > Kristof > > > On 23 Mar 2018, at 11:56, Chandler Carruth via llvm-dev < > llvm-dev at lists.llvm.org> wrote: > > Hello all, > > I've been working for the last month or so on a comprehensive mitigation > approach to variant #1 of Spectre. There are a bunch of reasons why this is > desirable: > - Critical software that is unlikely to be easily hand-mitigated (or where > the performance tradeoff isn't worth it) will have a compelling option. > - It gives us a baseline on performance for hand-mitigation. > - Combined with opt-in or opt-out, it may give simpler hand-mitigation. > - It is instructive to see *how* to mitigate code patterns. > > A detailed design document is available for commenting here: > > https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0/edit > (I pasted this in markdown format at the bottom of the email as well.) > > I have also published a very early prototype patch that implements this > design: > https://reviews.llvm.org/D44824 > This is the patch I've used to collect the performance data on the > approach. It should be fairly functional but is a long way from being ready > to review in detail, much less land. I'm posting so folks can start seeing > the overall approach and can play with it if they want. Grab it here: > > Comments are very welcome! I'd like to keep the doc and this thread > focused on discussion of the high-level technique for hardening, and the > code review thread for discussion of the techniques used to implement this > in LLVM. > > Thanks all! > -Chandler > > …. > > >-------------- next part -------------- An HTML attachment was scrubbed... URL: <http://lists.llvm.org/pipermail/llvm-dev/attachments/20180405/2b79879c/attachment.html>
Kristof Beyls via llvm-dev
2018-Jul-09 12:03 UTC
[llvm-dev] RFC: Speculative Load Hardening (a Spectre variant #1 mitigation)
Hi Chandler, I've just uploaded a sequence of patches that implement a similar technique for AArch64. A small difference of approach is that I went for introducing an intrinsic that can make any integer or pointer value "speculation-safe", i.e. the intrinsic returns the value of its only parameter when correctly speculating, and returns 0 when miss-speculating. The intrinsic is close to what Philip Reames suggested on https://reviews.llvm.org/D41761. Then a later patch (D49072) adds automatic mitigation by inserting the intrinsic in necessary locations. I believe this approach has the advantage that: a) it makes it possible to only insert a mitigation in specific locations if the programmer is capable of inserting intrinsics manually. b) it becomes easier to explore different options for implementing automatic protection - it's just a matter of writing different ways on how the intrinsic is injected into the program. See D49072 for how this is relatively easy. I've split the patches according to the following functionality: - LLVM: https://reviews.llvm.org/D49069: Introduce control flow speculation tracking for AArch64. - LLVM: https://reviews.llvm.org/D49070: Introduce llvm.speculation_safe_value intrinsic. - LLVM: https://reviews.llvm.org/D49071: Enable lowering of llvm.speculation_safe_value to DSB/ISB pair. - LLVM: https://reviews.llvm.org/D49072: Enable automatic mitigation against control flow speculation. - Clang: https://reviews.llvm.org/D49073: Introducing __builtin_speculation_safe_value. I'll be on a long holiday soon, so there may be delays to me reacting on review feedback. Thanks, Kristof On 23 Mar 2018, at 11:56, Chandler Carruth via llvm-dev <llvm-dev at lists.llvm.org<mailto:llvm-dev at lists.llvm.org>> wrote: Hello all, I've been working for the last month or so on a comprehensive mitigation approach to variant #1 of Spectre. There are a bunch of reasons why this is desirable: - Critical software that is unlikely to be easily hand-mitigated (or where the performance tradeoff isn't worth it) will have a compelling option. - It gives us a baseline on performance for hand-mitigation. - Combined with opt-in or opt-out, it may give simpler hand-mitigation. - It is instructive to see *how* to mitigate code patterns. A detailed design document is available for commenting here: https://docs.google.com/document/d/1wwcfv3UV9ZnZVcGiGuoITT_61e_Ko3TmoCS3uXLcJR0/edit (I pasted this in markdown format at the bottom of the email as well.) I have also published a very early prototype patch that implements this design: https://reviews.llvm.org/D44824 This is the patch I've used to collect the performance data on the approach. It should be fairly functional but is a long way from being ready to review in detail, much less land. I'm posting so folks can start seeing the overall approach and can play with it if they want. Grab it here: Comments are very welcome! I'd like to keep the doc and this thread focused on discussion of the high-level technique for hardening, and the code review thread for discussion of the techniques used to implement this in LLVM. Thanks all! -Chandler -------- # Speculative Load Hardening ### A Spectre Variant #1 Mitigation Technique Author: Chandler Carruth - [chandlerc at google.com<mailto:chandlerc at google.com>](mailto:chandlerc at google.com<mailto:chandlerc at google.com>) ## Problem Statement Recently, Google Project Zero and other researchers have found information leak vulnerabilities by exploiting speculative execution in modern CPUs. These exploits are currently broken down into three variants: * GPZ Variant #1 (a.k.a. Spectre Variant #1): Bounds check (or predicate) bypass * GPZ Variant #2 (a.k.a. Spectre Variant #2): Branch target injection * GPZ Variant #3 (a.k.a. Meltdown): Rogue data cache load For more details, see the Google Project Zero blog post and the Spectre research paper: * https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html * https://spectreattack.com/spectre.pdf The core problem of GPZ Variant #1 is that speculative execution uses branch prediction to select the path of instructions speculatively executed. This path is speculatively executed with the available data, and may load from memory and leak the loaded values through various side channels that survive even when the speculative execution is unwound due to being incorrect. Mispredicted paths can cause code to be executed with data inputs that never occur in correct executions, making checks against malicious inputs ineffective and allowing attackers to use malicious data inputs to leak secret data. Here is an example, extracted and simplified from the Project Zero paper: ``` struct array { unsigned long length; unsigned char data[]; }; struct array *arr1 = ...; // small array struct array *arr2 = ...; // array of size 0x400 unsigned long untrusted_offset_from_caller = ...; if (untrusted_offset_from_caller < arr1->length) { unsigned char value = arr1->data[untrusted_offset_from_caller]; unsigned long index2 = ((value&1)*0x100)+0x200; unsigned char value2 = arr2->data[index2]; } ``` The key of the attack is to call this with `untrusted_offset_from_caller` that is far outside of the bounds once the branch predictor is trained to predict that it will be in-bounds. In that case, the body of the `if` will be executed speculatively, and may read secret data into `value` and leak it via a cache-timing side channel when a dependent access is made to populate `value2`. ## High Level Mitigation Approach While several approaches are being actively pursued to mitigate specific branches and/or loads inside especially risky software (most notably various OS kernels), these approaches require manual and/or static analysis aided auditing of code and explicit source changes to apply the mitigation. They are unlikely to scale well to large applications. We are proposing a comprehensive mitigation approach that would apply automatically across an entire program rather than through manual changes to the code. While this is likely to have a high performance cost, some applications may be in a good position to take this performance / security tradeoff. The specific technique we propose is to cause loads to be checked using branchless code to ensure that they are executing along a valid control flow path. Consider the following C-pseudo-code representing the core idea of a predicate guarding potentially invalid loads: ``` void leak(int data); void example(int* pointer1, int* pointer2) { if (condition) { // ... lots of code ... leak(*pointer1); } else { // ... more code ... leak(*pointer2); } } ``` This would get transformed into something resembling the following: ``` uintptr_t all_ones_mask = std::numerical_limits<uintptr_t>::max(); uintptr_t all_zeros_mask = 0; void leak(int data); void example(int* pointer1, int* pointer2) { uintptr_t predicate_state = all_ones_mask; if (condition) { predicate_state = !condition ? all_zeros_mask : predicate_state; // ... lots of code ... // // Harden the pointer so it can't be loaded pointer1 &= predicate_state; leak(*pointer1); } else { predicate_state = condition ? all_zeros_mask : predicate_state; // ... more code ... // // Alternative: Harden the loaded value int value2 = *pointer2 & predicate_state; leak(value2); } } ``` The result should be that if the `if (condition) {` branch is mis-predicted, there is a *data* dependency on the condition used to zero out any pointers prior to loading through them or to zero out all of the loaded bits. Even though this code pattern may still execute speculatively, *invalid* speculative executions are prevented from leaking secret data from memory (but note that this data might still be loaded in safe ways, and some regions of memory are required to not hold secrets, see below for detailed limitations). This approach only requires the underlying hardware have a way to implement a branchless and unpredicted conditional update of a register's value. All modern architectures have support for this, and in fact such support is necessary to correctly implement constant time cryptographic primitives. Crucial properties of this approach: * It does not attempt to prevent any particular side-channel from working. This is important as there are an unknown number of potential side channels and we expect to continue discovering more. Instead, it prevents the read of secret data in the first place. * It accumulates the predicate state, protecting even in the face of nested *correctly* predicted control flows. * It uses a *destructive* or *non-reversible* modification of the address loaded to prevent an attacker from reversing the check using attacker-controlled offsets to the pointer. * It does not completely block speculative execution, and merely prevents *mis*-speculated paths from leaking secrets from memory (and stalls speculation until this can be determined). * It is completely general and makes no fundamental assumptions about the underlying architecture other than the ability to do branchless conditional data updates and a lack of value prediction. * It does not require programmers to identify all possible secret data or information leaks. Limitations of this approach: * It requires re-compiling source code to insert hardening instruction sequences. Only software compiled in this mode is protected. * The performance is heavily dependent on a particular architecture's implementation strategy. We outline a potential x86 implementation below and characterize its performance. * It does not defend against secret data already loaded from memory and residing in registers. Code dealing with this, e.g cryptographic routines, already have patterns to scrub registers of secret data, but these patterns must also be made unconditional. * To achieve reasonable performance, many loads may not be checked, such as those with compile-time fixed addresses. This primarily consists of accesses at compile-time constant offsets of global and local variables. Code which needs this protection and intentionally stores secret data must ensure the memory regions used for secret data are necessarily dynamic mappings or heap allocations. This is an area which can be tuned to provide more comprehensive protection at the cost of performance. * Hardened loads may still load valid addresses if not attacker-controlled addresses. To prevent these from reading secret data, the low 2gb of the address space and 2gb above and below any executable pages should be protected. Credit: * The core idea of tracing mis-speculation through data and marking pointers to block mis-speculated loads was developed as part of a HACS 2018 discussion with several individuals. * Core idea of masking out loaded bits was part of the original mitigation suggested by Jann Horn when these attacks were reported. ### Indirect Branches, Calls, and Returns It is possible to attack control flow other than conditional branches with variant #1 style mispredictions. * A prediction towards a hot call target of a virtual method can lead to it being speculatively executed when an expected type is used (often called "type confusion"). * A hot case may be speculatively executed due to prediction instead of the correct case for a switch statement implemented as a jump table. * A hot common return address may be predicted incorrectly when returning from a function. These code patterns are also vulnerable to Spectre variant #2, and as such are best mitigated with a [retpoline](https://support.google.com/faqs/answer/7625886) on x86 platforms. When a mitigation technique like retpoline is used, speculation simply cannot proceed through an indirect control flow edge (or it cannot be mispredicted in the case of a filled RSB) and so it is also protected from variant #1 style attacks. However, some architectures, micro-architectures, or vendors do not employ the retpoline mitigation, and on future x86 hardware (both Intel and AMD) it is expected to become unnecessary due to hardware-based mitigation. When not using a retpoline, these edges will need independent protection from variant #1 style attacks. The analogous approach to that used for conditional control flow should work: ``` uintptr_t all_ones_mask = std::numerical_limits<uintptr_t>::max(); uintptr_t all_zeros_mask = 0; void leak(int data); void example(int* pointer1, int* pointer2) { uintptr_t predicate_state = all_ones_mask; switch (condition) { case 0: predicate_state = (condition != 0) ? all_zeros_mask : predicate_state; // ... lots of code ... // // Harden the pointer so it can't be loaded pointer1 &= predicate_state; leak(*pointer1); break; case 1: predicate_state = (condition != 1) ? all_zeros_mask : predicate_state; // ... more code ... // // Alternative: Harden the loaded value int value2 = *pointer2 & predicate_state; leak(value2); break; // ... } } ``` The core idea remains the same: validate the control flow using data-flow and use that validation to check that loads cannot leak information along misspeculated paths. Typically this involves passing the desired target of such control flow across the edge and checking that it is correct afterwards. Note that while it is tempting to think that this mitigates variant #2 attacks, it does not. Those attacks go to arbitrary gadgets that don't include the checks. ## Implementation Details There are a number of complex details impacting the implementation of this technique, both on a particular architecture and within a particular compiler. We discuss proposed implementation techniques for the x86 architecture and the LLVM compiler. These are primarily to serve as an example, as other implementation techniques are very possible. ### x86 Implementation Details On the x86 platform we break down the implementation into three core components: accumulating the predicate state through the control flow graph, checking the loads, and checking control transfers between procedures. #### Accumulating Predicate State Consider baseline x86 instructions like the following, which test three conditions and if all pass, loads data from memory and potentially leaks it through some side channel: ``` # %bb.0: # %entry pushq %rax testl %edi, %edi jne .LBB0_4 # %bb.1: # %then1 testl %esi, %esi jne .LBB0_4 # %bb.2: # %then2 testl %edx, %edx je .LBB0_3 .LBB0_4: # %exit popq %rax retq .LBB0_3: # %danger movl (%rcx), %edi callq leak popq %rax retq ``` When we go to speculatively execute the load, we want to know whether any of the dynamically executed predicates have been mis-speculated. To track that, along each conditional edge, we need to track the data which would allow that edge to be taken. On x86, this data is stored in the flags register used by the conditional jump instruction. Along both edges after this fork in control flow, the flags register remains alive and contains data that we can use to build up our accumulated predicate state. We accumulate it using the x86 conditional move instruction which also reads the flag registers where the state resides. These conditional move instructions are known to not be predicted on any x86 processors, making them immune to misprediction that could reintroduce the vulnerability. When we insert the conditional moves, the code ends up looking like the following: ``` # %bb.0: # %entry pushq %rax xorl %eax, %eax # Zero out initial predicate state. movq $-1, %r8 # Put all-ones mask into a register. testl %edi, %edi jne .LBB0_1 # %bb.2: # %then1 cmovneq %r8, %rax # Conditionally update predicate state. testl %esi, %esi jne .LBB0_1 # %bb.3: # %then2 cmovneq %r8, %rax # Conditionally update predicate state. testl %edx, %edx je .LBB0_4 .LBB0_1: cmoveq %r8, %rax # Conditionally update predicate state. popq %rax retq .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. ... ``` Here we create the "empty" or "correct execution" predicate state by zeroing `%rax`, and we create a constant "incorrect execution" predicate value by putting `-1` into `%r8`. Then, along each edge coming out of a conditional branch we do a conditional move that in a correct execution will be a no-op, but if mis-speculated, will replace the `%rax` with the value of `%r8`. Misspeculating any one of the three predicates will cause `%rax` to hold the "incorrect execution" value from `%r8` as we preserve incoming values when execution is correct rather than overwriting it. We now have a value in `%rax` in each basic block that indicates if at some point previously a predicate was mispredicted. And we have arranged for that value to be particularly effective when used below to harden loads. ##### Indirect Call, Branch, and Return Predicates (Not yet implemented.) There is no analogous flag to use when tracing indirect calls, branches, and returns. The predicate state must be accumulated through some other means. Fundamentally, this is the reverse of the problem posed in CFI: we need to check where we came from rather than where we are going. For function-local jump tables, this is easily arranged by testing the input to the jump table within each destination: ``` pushq %rax xorl %eax, %eax # Zero out initial predicate state. movq $-1, %r8 # Put all-ones mask into a register. jmpq *.LJTI0_0(,%rdi,8) # Indirect jump through table. .LBB0_2: # %sw.bb<http://sw.bb/> testq $0, %rdi # Validate index used for jump table. cmovneq %r8, %rax # Conditionally update predicate state. ... jmp _Z4leaki # TAILCALL .LBB0_3: # %sw.bb1 testq $1, %rdi # Validate index used for jump table. cmovneq %r8, %rax # Conditionally update predicate state. ... jmp _Z4leaki # TAILCALL .LBB0_5: # %sw.bb10 testq $2, %rdi # Validate index used for jump table. cmovneq %r8, %rax # Conditionally update predicate state. ... jmp _Z4leaki # TAILCALL ... .section .rodata,"a", at progbits .p2align 3 .LJTI0_0: .quad .LBB0_2 .quad .LBB0_3 .quad .LBB0_5 ... ``` Returns have a simple mitigation technique on x86-64 (or other ABIs which have what is called a "red zone" region beyond the end of the stack). This region is guaranteed to be preserved across interrupts and context switches, making the return address used in returning to the current code remain on the stack and valid to read. We can emit code in the caller to verify that a return edge was not mispredicted: ``` callq other_function return_addr: testq -8(%rsp), return_addr # Validate return address. cmovneq %r8, %rax # Update predicate state. ``` For an ABI without a "red zone" (and thus unable to read the return address from the stack), mitigating returns face similar problems to calls below. Indirect calls (and returns in the absence of a red zone ABI) pose the most significant challenge to propagate. The simplest technique would be to define a new ABI such that the intended call target is passed into the called function and checked in the entry. Unfortunately, new ABIs are quite expensive to deploy in C and C++. While the target function could be passed in TLS, we would still require complex logic to handle a mixture of functions compiled with and without this extra logic (essentially, making the ABI backwards compatible). Currently, we suggest using retpolines here and will continue to investigate ways of mitigating this. ##### Optimizations, Alternatives, and Tradeoffs Merely accumulating predicate state involves significant cost. There are several key optimizations we employ to minimize this and various alternatives that present different tradeoffs in the generated code. First, we work to reduce the number of instructions used to track the state: * Rather than inserting a `cmovCC` instruction along every conditional edge in the original program, we track each set of condition flags we need to capture prior to entering each basic block and reuse a common `cmovCC` sequence for those. * We could further reuse suffixes when there are multiple `cmovCC` instructions required to capture the set of flags. Currently this is believed to not be worth the cost as paired flags are relatively rare and suffixes of them are exceedingly rare. * A common pattern in x86 is to have multiple conditional jump instructions that use the same flags but handle different conditions. Naively, we could consider each fallthrough between them an "edge" but this causes a much more complex control flow graph. Instead, we accumulate the set of conditions necessary for fallthrough and use a sequence of `cmovCC` instructions in a single fallthrough edge to track it. Second, we trade register pressure for simpler `cmovCC` instructions by allocating a register for the "bad" state. We could read that value from memory as part of the conditional move instruction, however, this creates more micro-ops and requires the load-store unit to be involved. Currently, we place the value into a virtual register and allow the register allocator to decide when the register pressure is sufficient to make it worth spilling to memory and reloading. #### Hardening Loads Once we have the predicate accumulated into a special value for correct vs. mis-speculated, we need to apply this to loads in a way that ensures they do not leak secret data. There are two primary techniques for this: we can either harden the loaded value to prevent observation, or we can harden the address itself to prevent the load from occuring. These have significantly different performance tradeoffs. ##### Hardening loaded values The most appealing way to harden loads is to mask out all of the bits loaded. The key requirement is that for each bit loaded, along the mis-speculated path that bit is always fixed at either 0 or 1 regardless of the value of the bit loaded. The most obvious implementation uses either an `and` instruction with an all-zero mask along mis-speculated paths and an all-one mask along correct paths, or an `or` instruction with an all-one mask along mis-speculated paths and an all-zero mask along correct paths. Other options become less appealing such as multiplying by zero or one, or multiple shift instructions. For reasons we elaborate on below, we end up suggesting you use `or` with an all-ones mask, making the x86 instruction sequence look like the following: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. movl (%rsi), %edi # Load potentially secret data from %rsi. orl %eax, %edi ``` Other useful patterns may be to fold the load into the `or` instruction itself at the cost of a register-to-register copy. There are some challenges with deploying this approach: 1. Many loads on x86 are folded into other instructions. Separating them would add very significant and costly register pressure with prohibitive performance cost. 2. Loads may not target a general purpose register requiring extra instructions to map the state value into the correct register class, and potentially more expensive instructions to mask the value in some way. 3. The flags registers on x86 are very likely to be live, and challenging to preserve cheaply. 4. There are many more values loaded than pointers & indices used for loads. As a consequence, hardening the result of a load requires substantially more instructions than hardening the address of the load (see below). Despite these challenges, hardening the result of the load critically allows the load to proceed and thus has dramatically less impact on the total speculative / out-of-order potential of the execution. There are also several interesting techniques to try and mitigate these challenges and make hardening the results of loads viable in at least some cases. However, we generally expect to fall back when unprofitable from hardening the loaded value to the next approach of hardening the address itself. ###### Loads folded into data-invariant operations can be hardened after the operation The first key to making this feasible is to recognize that many operations on x86 are "data-invariant". That is, they have no (known) observable behavior differences due to the particular input data. These instructions are often used when implementing cryptographic primitives dealing with private key data because they are not believed to provide any side-channels. Similarly, we can defer hardening until after them as they will not in-and-of-themselves introduce a speculative execution side-channel. This results in code sequences that look like: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. addl (%rsi), %edi # Load and accumulate without leaking. orl %eax, %edi ``` While an addition happens to the loaded (potentially secret) value, that doesn't leak any data and we then immediately harden it. ###### Hardening of loaded values deferred down the data-invariant expression graph We can generalize the previous idea and sink the hardening down the expression graph across as many data-invariant operations as desirable. This can use very conservative rules for whether something is data-invariant. The primary goal should be to handle multiple loads with a single hardening instruction: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. addl (%rsi), %edi # Load and accumulate without leaking. addl 4(%rsi), %edi # Continue without leaking. addl 8(%rsi), %edi orl %eax, %edi # Mask out bits from all three loads. ``` ###### Preserving the flags while hardening loaded values on Haswell, Zen, and newer processors Sadly, there are no useful instructions on x86 that apply a mask to all 64 bits without touching the flag registers. However, we can harden loaded values that are narrower than a word (fewer than 32-bits on 32-bit systems and fewer than 64-bits on 64-bit systems) by zero-extending the value to the full word size and then shifting right by at least the number of original bits using the BMI2 `shrx` instruction: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. addl (%rsi), %edi # Load and accumulate 32 bits of data. shrxq %rax, %rdi, %rdi # Shift out all 32 bits loaded. ``` Because on x86 the zero-extend is free, this can efficiently harden the loaded value. ##### Hardening the address of the load When hardening the loaded value is inapplicable, most often because the instruction directly leaks information (like `cmp` or `jmpq`), we switch to hardening the _address_ of the load instead of the loaded value. This avoids increasing register pressure by unfolding the load or paying some other high cost. To understand how this works in practice, we need to examine the exact semantics of the x86 addressing modes which, in its fully general form, looks like `(%base,%index,scale)offset`. Here `%base` and `%index` are 64-bit registers that can potentially be any value, and may be attacker controlled, and `scale` and `offset` are fixed immediate values. `scale` must be `1`, `2`, `4`, or `8`, and `offset` can be any 32-bit sign extended value. The exact computation performed to find the address is then: `%base + (scale * %index) + offset` under 64-bit 2's complement modular arithmetic. One issue with this approach is that, after hardening, the `%base + (scale * %index)` subexpression will compute a value near zero (`-1 + (scale * -1)`) and then a large, positive `offset` will index into memory within the first two gigabytes of address space. While these offsets are not attacker controlled, the attacker could chose to attack a load which happens to have the desired offset and then successfully read memory in that region. This significantly raises the burden on the attacker and limits the scope of attack but does not eliminate it. To fully close the attack we must work with the operating system to preclude mapping memory in the low two gigabytes of address space. ###### 64-bit load checking instructions We can use the following instruction sequences to check loads. We set up `%r8` in these examples to hold the special value of `-1` which will be `cmov`ed over `%rax` in mis-speculated paths. Single register addressing mode: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. orq %rax, %rsi # Mask the pointer if misspeculating. movl (%rsi), %edi ``` Two register addressing mode: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. orq %rax, %rsi # Mask the pointer if misspeculating. orq %rax, %rcx # Mask the index if misspeculating. movl (%rsi,%rcx), %edi ``` This will result in a negative address near zero or in `offset` wrapping the address space back to a small positive address. Small, negative addresses will fault in user-mode for most operating systems, but targets which need the high address space to be user accessible may need to adjust the exact sequence used above. Additionally, the low addresses will need to be marked unreadable by the OS to fully harden the load. ###### RIP-relative addressing is even easier to break There is a common addressing mode idiom that is substantially harder to check: addressing relative to the instruction pointer. We cannot change the value of the instruction pointer register and so we have the harder problem of forcing `%base + scale * %index + offset` to be an invalid address, by *only* changing `%index`. The only advantage we have is that the attacker also cannot modify `%base`. If we use the fast instruction sequence above, but only apply it to the index, we will always access `%rip + (scale * -1) + offset`. If the attacker can find a load which with this address happens to point to secret data, then they can reach it. However, the loader and base libraries can also simply refuse to map the heap, data segments, or stack within 2gb of any of the text in the program, much like it can reserve the low 2gb of address space. ###### The flag registers again make everything hard Unfortunately, the technique of using `orq`-instructions has a serious flaw on x86. The very thing that makes it easy to accumulate state, the flag registers containing predicates, causes serious problems here because they may be alive and used by the loading instruction or subsequent instructions. On x86, the `orq` instruction **sets** the flags and will override anything already there. This makes inserting them into the instruction stream very hazardous. Unfortunately, unlike when hardening the loaded value, we have no fallback here and so we must have a fully general approach available. The first thing we must do when generating these sequences is try to analyze the surrounding code to prove that the flags are not in fact alive or being used. Typically, it has been set by some other instruction which just happens to set the flags register (much like ours!) with no actual dependency. In those cases, it is safe to directly insert these instructions. Alternatively we may be able to move them earlier to avoid clobbering the used value. However, this may ultimately be impossible. In that case, we need to preserve the flags around these instructions: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. pushfq orq %rax, %rcx # Mask the pointer if misspeculating. orq %rax, %rdx # Mask the index if misspeculating. popfq movl (%rcx,%rdx), %edi ``` Using the `pushf` and `popf` instructions saves the flags register around our inserted code, but comes at a high cost. First, we must store the flags to the stack and reload them. Second, this causes the stack pointer to be adjusted dynamically, requiring a frame pointer be used for referring to temporaries spilled to the stack, etc. On newer x86 processors we can use the `lahf` and `sahf` instructions to save all of the flags besides the overflow flag in a register rather than on the stack. We can then use `seto` and `add` to save and restore the overflow flag in a register. Combined, this will save and restore flags in the same manner as above but using two registers rather than the stack. That is still very expensive if slightly less expensive than `pushf` and `popf` in most cases. ###### A flag-less alternative on Haswell, Zen and newer processors Starting with the BMI2 x86 instruction set extensions available on Haswell and Zen processors, there is an instruction for shifting that does not set any flags: `shrx`. We can use this and the `lea` instruction to implement analogous code sequences to the above ones. However, these are still very marginally slower, as there are fewer ports able to dispatch shift instructions in most modern x86 processors than there are for `or` instructions. Fast, single register addressing mode: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. shrxq %rax, %rsi, %rsi # Shift away bits if misspeculating. movl (%rsi), %edi ``` This will collapse the register to zero or one, and everything but the offset in the addressing mode to be less than or equal to 9. This means the full address can only be guaranteed to be less than `(1 << 31) + 9`. The OS may wish to protect an extra page of the low address space to account for this ##### Optimizations A very large portion of the cost for this approach comes from checking loads in this way, so it is important to work to optimize this. However, beyond making the instruction sequences to *apply* the checks efficient (for example by avoiding `pushfq` and `popfq` sequences), the only significant optimization is to check fewer loads without introducing a vulnerability. We apply several techniques to accomplish that. ###### Don't check loads from compile-time constant stack offsets We implement this optimization on x86 by skipping the checking of loads which use a fixed frame pointer offset. The result of this optimization is that patterns like reloading a spilled register or accessing a global field don't get checked. This is a very significant performance win. ###### Don't check dependent loads A core part of why this mitigation strategy works is that it establishes a data-flow check on the loaded address. However, this means that if the address itself was already loaded using a checked load, there is no need to check a dependent load provided it is within the same basic block as the checked load, and therefore has no additional predicates guarding it. Consider code like the following: ``` ... .LBB0_4: # %danger movq (%rcx), %rdi movl (%rdi), %edx ``` This will get transformed into: ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. orq %rax, %rcx # Mask the pointer if misspeculating. movq (%rcx), %rdi # Hardened load. movl (%rdi), %edx # Unhardened load due to dependent addr. ``` This doesn't check the load through `%rdi` as that pointer is dependent on a checked load already. ###### Protect large, load-heavy blocks with a single lfence It may be worth using a single `lfence` instruction at the start of a block which begins with a (very) large number of loads that require independent protection *and* which require hardening the address of the load. However, this is unlikely to be profitable in practice. The latency hit of the hardening would need to exceed that of an `lfence` when *correctly* speculatively executed. But in that case, the `lfence` cost is a complete loss of speculative execution (at a minimum). So far, the evidence we have of the performance cost of using `lfence` indicates few if any hot code patterns where this trade off would make sense. ###### Tempting optimizations that break the security model Several optimizations were considered which didn't pan out due to failure to uphold the security model. One in particular is worth discussing as many others will reduce to it. We wondered whether only the *first* load in a basic block could be checked. If the check works as intended, it forms an invalid pointer that doesn't even virtual-address translate in the hardware. It should fault very early on in its processing. Maybe that would stop things in time for the mis-speculated path to fail to leak any secrets. This doesn't end up working because the processor is fundamentally out-of-order, even in its speculative domain. As a consequence, the attacker could cause the initial address computation itself to stall and allow an arbitrary number of unrelated loads (including attacked loads of secret data) to pass through. #### Interprocedural Checking Modern x86 processors may speculate into called functions and out of functions to their return address. As a consequence, we need a way to check loads that occur after a mis-speculated predicate but where the load and the mis-speculated predicate are in different functions. In essence, we need some interprocedural generalization of the predicate state tracking. A primary challenge to passing the predicate state between functions is that we would like to not require a change to the ABI or calling convention in order to make this mitigation more deployable, and further would like code mitigated in this way to be easily mixed with code not mitigated in this way and without completely losing the value of the mitigation. ##### Embed the predicate state into the high bit(s) of the stack pointer We can use the same technique that allows hardening pointers to pass the predicate state into and out of functions. The stack pointer is trivially passed between functions and we can test for it having the high bits set to detect when it has been marked due to mis-speculation. The callsite instruction sequence looks like (assuming a mis-speculated state value of `-1`): ``` ... .LBB0_4: # %danger cmovneq %r8, %rax # Conditionally update predicate state. shlq $47, %rax orq %rax, %rsp callq other_function movq %rsp, %rax sarq 63, %rax # Sign extend the high bit to all bits. ``` This first puts the predicate state into the high bits of `%rsp` before calling the function and then reads it back out of high bits of `%rsp` afterward. When correctly executing (speculatively or not), these are all no-ops. When misspeculating, the stack pointer will end up negative. We arrange for it to remain a canonical address, but otherwise leave the low bits alone to allow stack adjustments to proceed normally without disrupting this. Within the called function, we can extract this predicate state and then reset it on return: ``` other_function: # prolog callq other_function movq %rsp, %rax sarq 63, %rax # Sign extend the high bit to all bits. # ... .LBB0_N: cmovneq %r8, %rax # Conditionally update predicate state. shlq $47, %rax orq %rax, %rsp retq ``` This approach is effective when all code is mitigated in this fashion, and can even survive very limited reaches into unmitigated code (the state will round-trip in and back out of an unmitigated function, it just won't be updated). But it does have some limitations. There is a cost to merging the state into `%rsp` and it doesn't insulate mitigated code from mis-speculation in an unmitigated caller. ##### Rewrite API of internal functions to directly propagate predicate state (Not yet implemented.) We have the option with internal functions to directly adjust their API to accept the predicate as an argument and return it. This is likely to be marginally cheaper than embedding into `%rsp` for entering functions. ##### Use `lfence` to guard function transitions We know that an `lfence` instruction can be used to block speculation completely and so we can use this stronger mitigation between functions. We emit it in the entry block to handle calls, and prior to each return. This approach also has the advantage of providing the strongest degree of mitigation when mixed with unmitigated code by halting all mis-speculation entering a function which is mitigated, regardless of what occured in the caller. However, experimental results indicate that the performance overhead of this approach is very high for certain patterns of code. A classic example is any form of recursive evaluation engine. The hot, rapid call and return sequences exhibit dramatic performance loss when mitigated with `lfence`. This component alone can regress performance by 2x or more. ##### Use an internal TLS location to pass predicate state We can define a special thread-local value to hold the predicate state between functions. This avoids direct ABI implications by using a side channel between callers and callees to communicate the predicate state. It also allows implicit zero-initialization of the state, which allows non-checked code to be the first code executed. However, this requires a load from TLS in the entry block, a store to TLS before every call and every ret, and a load from TLS after every call. As a consequence it is expected to be substantially more expensive even than using `%rsp` and potentially `lfence` within the function entry block. ##### Define a new ABI and/or calling convention We could define a new ABI and/or calling convention to explicitly pass the predicate state in and out of functions. This may be interesting if none of the alternatives have adequate performance, but it makes deployment and adoption dramatically more complex, and potentially infeasible. ## Alternative Mitigation Strategies [Most](https://lwn.net/Articles/743265/) [discussion](https://lwn.net/Articles/744287/) on mitigating variant 1 attacks focuses on mitigating specific known attackable components in the Linux kernel (or other kernels) by manually rewriting the code to contain an instruction sequence that is not vulnerable. For x86 systems this is done by either injecting an `lfence` instruction along the code path which would leak data if executed speculatively or by rewriting memory accesses to have branch-less masking to a known safe region. On Intel systems, `lfence` [will prevent the speculative load of secret data](https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf). On AMD systems `lfence` is currently a no-op, but can be made dispatch-serializing by setting an MSR, and thus preclude mis-speculation of the code path ([mitigation G-2 + V1-1](https://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf)). However, this relies on finding and enumerating all possible points in code which could be attacked to leak information. While in some cases static analysis is effective at doing this at scale, in many cases it still relies on human judgement to evaluate whether code might be vulnerable. Especially for software systems which receive less detailed scrutiny but remain sensitive to these attacks, this seems like an impractical security model. We need an automatic and systematic mitigation strategy. ### Automatic `lfence` on Conditional Edges A natural way to scale up the existing hand-coded mitigations is simply to inject an `lfence` instruction into both the target and fallthrough destinations of every conditional branch. This ensures that no predicate or bounds check can be bypassed speculatively. However, the performance overhead of this approach is, simply put, catastrophic. Yet it remains the only truly "secure by default" approach known prior to this effort and serves as the baseline for performance. One attempt to address the performance overhead of this and make it more realistic to deploy is [MSVC's /Qspectre switch](https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/). Their technique is to use static analysis within the compiler to only insert `lfence` instructions into conditional edges at risk of attack. However, initial analysis (still under embargo) has shown that this analysis is incomplete and only catches a small and limited subset of attackable patterns which happen to resemble very closely the initial proofs of concept. As such, while its performance is acceptable, it does not appear to be an adequate systematic mitigation. ## Performance Overhead The performance overhead of this style of comprehensive mitigation is very high. However, it compares very favorably with previously recommended approaches such as the `lfence` instruction. Just as users can restrict the scope of `lfence` to control its performance impact, this mitigation technique could be restricted in scope as well. However, it is important to understand what it would cost to get a fully mitigated baseline. Here we assume targeting a Haswell (or newer) processor and using all of the tricks to improve performance (so leaves the low 2gb unprotected and +/- 2gb surrounding any PC in the program). We ran both Google's microbenchmark suite and a large highly-tuned server built using ThinLTO and PGO. All were built with `-march=haswell` to give access to BMI2 instructions, and benchmarks were run on large Haswell servers. We collected data both with an `lfence`-based mitigation and load hardening as presented here. The summary is that mitigating with load hardening is 1.77x faster than mitigating with `lfence`, and the overhead of load hardening compared to a normal program is likely between a 10% overhead and a 50% overhead with most large applications seeing a 30% overhead or less. | Benchmark | `lfence` | Load Hardening | Mitigated Speedup | | -------------------------------------- | -------: | -------------: | ----------------: | | Google microbenchmark suite | -74.8% | -36.4% | **2.5x** | | Large server QPS (using ThinLTO & PGO) | -62% | -29% | **1.8x** | Below is a visualization of the microbenchmark suite results which hels show the distribution of results that is somewhat lost in the summary. The y-axis is a log-scale speedup ratio of load hardening relative to `lfence` (up -> faster -> better). Each box-and-whiskers represents one microbenchmark which may have many different metrics measured. The red line marks the median, the box marks the first and third quartiles, and the whiskers mark the min and max. ![Microbenchmark result visualization](speculative_load_hardening_microbenchmarks.png) We don't yet have benchmark data on SPEC or the LLVM test suite, but we can work on getting that. Still, the above should give a pretty clear characterization of the performance, and specific benchmarks are unlikely to reveal especially interesting properties. ### Future Work: Fine Grained Control and API-Integration The performance overhead of this technique is likely to be very significant and something users wish to control or reduce. There are interesting options here that impact the implementation strategy used. One particularly appealing option is to allow both opt-in and opt-out of this mitigation at reasonably fine granularity such as on a per-function basis, including intelligent handling of inlining decisions -- protected code can be prevented from inlining into unprotected code, and unprotected code will become protected when inlined into protected code. For systems where only a limited set of code is reachable by externally controlled inputs, it may be possible to limit the scope of mitigation through such mechanisms without compromising the application's overall security. The performance impact may also be focused in a few key functions that can be hand-mitigated in ways that have lower performance overhead while the remainder of the application receives automatic protection. For both limiting the scope of mitigation or manually mitigating hot functions, there needs to be some support for mixing mitigated and unmitigated code without completely defeating the mitigation. For the first use case, it would be particularly desirable that mitigated code remains safe when being called during mis-speculation from unmitigated code. For the second use case, it may be important to connect the automatic mitigation technique to explicit mitigation APIs such as what is described in http://wg21.link/p0928 (or any other eventual API) so that there is a clean way to switch from automatic to manual mitigation without immediately exposing a hole. However, the design for how to do this is hard to come up with until the APIs are better established. We will revisit this as those APIs mature. _______________________________________________ LLVM Developers mailing list llvm-dev at lists.llvm.org<mailto:llvm-dev at lists.llvm.org> http://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-dev -------------- next part -------------- An HTML attachment was scrubbed... URL: <http://lists.llvm.org/pipermail/llvm-dev/attachments/20180709/1431454f/attachment-0001.html>
Chandler Carruth via llvm-dev
2018-Jul-11 11:02 UTC
[llvm-dev] RFC: Speculative Load Hardening (a Spectre variant #1 mitigation)
FYI to all: I've updated the design document to include the newly disclosed variants 1.1 and 1.2 (collectively called Bounds Check Bypass Store or BCBS). There is no change to the proposed implementation which can already robustly mitigate these variants. I've also updated my patch as we have very significant interest in getting at least an early "beta" version of this into the tree and available for experiments right away. Would really appreciate folks making review comments ASAP and bearing with us and tolerating some amount of post-commit iteration here. Notably: On Mon, Jul 9, 2018 at 5:03 AM Kristof Beyls <Kristof.Beyls at arm.com> wrote:> Hi Chandler, > > I've just uploaded a sequence of patches that implement a similar > technique for > AArch64. >This is awesome. =D I can't wait to start wiring this together.> A small difference of approach is that I went for introducing an intrinsic > that > can make any integer or pointer value "speculation-safe", i.e. the > intrinsic > returns the value of its only parameter when correctly speculating, and > returns > 0 when miss-speculating. > The intrinsic is close to what Philip Reames suggested on > https://reviews.llvm.org/D41761. >Cool, we'll definitely need *some* intrinsic in the IR to help model source annotations. I still need to think a bit about the interface and model for this...> > Then a later patch (D49072) adds automatic mitigation by inserting the > intrinsic > in necessary locations. >I was never able to get automatic mitigation with an intrinsic to avoid really signiifcant performance problems in the x86 backend. I'll look through your approach to see if you figured out a technique that works better than the ones I tried here....> I believe this approach has the advantage that: > a) it makes it possible to only insert a mitigation in specific locations > if > the programmer is capable of inserting intrinsics manually. >This is definitely an area of great interest long-term.> b) it becomes easier to explore different options for implementing > automatic > protection - it's just a matter of writing different ways on how the > intrinsic is injected into the program. See D49072 for how this is > relatively > easy. >As above, I actually tried this and it backfired in terms of code quality. I'll definitely look at this and either try to explain the problem I hit or if you've dodged nicely, we can rework things to move in this direction.> I've split the patches according to the following functionality: > - LLVM: https://reviews.llvm.org/D49069: Introduce control flow > speculation tracking for AArch64. > - LLVM: https://reviews.llvm.org/D49070: Introduce > llvm.speculation_safe_value intrinsic. > - LLVM: https://reviews.llvm.org/D49071: Enable lowering of > llvm.speculation_safe_value to DSB/ISB pair. > - LLVM: https://reviews.llvm.org/D49072: Enable automatic mitigation > against control flow speculation. > - Clang: https://reviews.llvm.org/D49073: Introducing > __builtin_speculation_safe_value. > > I'll be on a long holiday soon, so there may be delays to me reacting on > review feedback. >Sure. Given the sudden but very strong interest we have from some users, I'm going to try and make progress landing at least the initial version of the x86 stuff. But I very much want to iterate on it and get it and the AArch64 stuff you've got here to line up and work together. I really like the overall direction. -------------- next part -------------- An HTML attachment was scrubbed... URL: <http://lists.llvm.org/pipermail/llvm-dev/attachments/20180711/6b9e8913/attachment.html>
Hi, I've seen that in the new llvm version (7.0) there are some mitigations for Spectre v1, so the clang compiler might have them implemented, but, by the way, any of the command line flag works. I've downloaded the llvm source code and have seen that there are 3 dependencies broken on lib/Target/X86/X86SpeculativeLoadHardening.cpp -> lib/Target/X86/MCTargetDesc/ should have X86GenRegisterInfo.inc, X86GenInstrInfo.inc and X86GenSubtargetInfo.inc files, but it doesn't. It's this causing the problem? There's some way to apply the mitigation or it haven't been done yet? Cheers, Andrés