> It's fairly straightforward to plot cumulative histograms using the
hist()> function. You do something like:
>
> h <- hist(rnorm(100), plot=FALSE)
> h$counts<- cumsum(h$counts)
> plot(h)
>
> However, I have failed to find any example where this is done using the
> lattice histogram() function. I realize I need to slightly alter the
panel> function panel.histogram. Specifially I would like to add the following
line> in red, just like I did above:
>
> function (x, breaks, equal.widths = TRUE, type = "density", nint
> round(log2(length(x)) +
> 1), alpha = plot.polygon$alpha, col = plot.polygon$col, border >
plot.polygon$border,
> lty = plot.polygon$lty, lwd = plot.polygon$lwd, ...)
> {
> plot.polygon <- trellis.par.get("plot.polygon")
> xscale <- current.panel.limits()$xlim
> panel.lines(x = xscale[1] + diff(xscale) * c(0.05, 0.95),
> y = c(0, 0), col = border, lty = lty, lwd = lwd, alpha = alpha)
> if (length(x) > 0) {
> if (is.null(breaks)) {
> breaks <- if (is.factor(x))
> seq_len(1 + nlevels(x)) - 0.5
> else if (equal.widths)
> do.breaks(range(x, finite = TRUE), nint)
> else quantile(x, 0:nint/nint, na.rm = TRUE)
> }
> h <- hist.constructor(x, breaks = breaks, ...)
>
> h$counts<- cumsum(h$counts)
>
> y <- if (type == "count")
> h$counts
> else if (type == "percent")
> 100 * h$counts/length(x)
> else h$intensities
> breaks <- h$breaks
> nb <- length(breaks)
> if (length(y) != nb - 1)
> warning("problem with 'hist' computations")
> if (nb > 1) {
> panel.rect(x = breaks[-nb], y = 0, height = y, width >
diff(breaks),
> col = col, alpha = alpha, border = border, lty = lty,
> lwd = lwd, just = c("left", "bottom"))
> }
> }
> }
You are nearly there! You just need to:
1. Specify the package of hist.constructor so R's search mechanism finds
it.
h <- lattice:::hist.constructor(x, breaks = breaks, ...)
2. Give the new function a name.
panel.cumul.histogram <- function (x, breaks, etc.
3. Specify the function to use for the panel in your call to histogram.
histogram(<some params>, panel=panel.cumul.histogram)
4. You'll also need to play about with the y axis limits.
histogram(<some params>, ylim=c(0, something))
Here's an example with the singer data:
panel.cumul.histogram <- function (x, breaks, equal.widths = TRUE, type =
"density", nint round(log2(length(x)) +
1), alpha = plot.polygon$alpha, col = plot.polygon$col, border
plot.polygon$border,
lty = plot.polygon$lty, lwd = plot.polygon$lwd, ...)
{
plot.polygon <- trellis.par.get("plot.polygon")
xscale <- current.panel.limits()$xlim
panel.lines(x = xscale[1] + diff(xscale) * c(0.05, 0.95),
y = c(0, 0), col = border, lty = lty, lwd = lwd, alpha = alpha)
if (length(x) > 0) {
if (is.null(breaks)) {
breaks <- if (is.factor(x))
seq_len(1 + nlevels(x)) - 0.5
else if (equal.widths)
do.breaks(range(x, finite = TRUE), nint)
else quantile(x, 0:nint/nint, na.rm = TRUE)
}
h <- lattice:::hist.constructor(x, breaks = breaks, ...)
h$counts<- cumsum(h$counts)
y <- if (type == "count")
h$counts
else if (type == "percent")
100 * h$counts/length(x)
else h$intensities
breaks <- h$breaks
nb <- length(breaks)
if (length(y) != nb - 1)
warning("problem with 'hist' computations")
if (nb > 1) {
panel.rect(x = breaks[-nb], y = 0, height = y, width diff(breaks),
col = col, alpha = alpha, border = border, lty = lty,
lwd = lwd, just = c("left", "bottom"))
}
}
}
histogram( ~ height | voice.part,
data = singer,
nint = 17,
endpoints = c(59.5, 76.5),
layout = c(2,4),
aspect = 1,
xlab = "Height (inches)",
panel=panel.cumul.histogram,
type="count",
ylim=c(0,max(summary(singer$voice.part)+1)))
Having said all this, I'm not entirely convinced that a cumulative
histogram is as useful as your standard issue empirical cumulative density
function.
Regards,
Richie.
Mathematical Sciences Unit
HSL
------------------------------------------------------------------------
ATTENTION:
This message contains privileged and confidential inform...{{dropped:20}}