Hello, I want to fit a GEE with a user-defined link function. For the user-defined link-function I still read http://finzi.psych.upenn.edu/R/Rhelp01/archive/6555.html and http://finzi.psych.upenn.edu/R/Rhelp02a/archive/25727.html. Only for testing purposes I added a new link function (corlogit) in make.link (as well as in binomial) with exactly the same code as logit before using my code. I tried it with glm() and it works without any problem (I get the same results using 'binomial(link="logit")' or 'binomial(link="corlogit")'). But with library(geepack) (Version: 0.2-10) I get different results for logit and test.logit as link functions. First there was an error, so that I had to modify 'geese.fit' (I only added test.logit where I found logit). With library(gee) (Version: 4.13-10) R exits without error when fitting a GEE with binomial(link="corlogit"). Because of the error 'unkown link' I modified 'gee' the same way as for geepack(). I never changed the original application files, but I wrote "own programmes" (using the original code and just adding corlogit in the list of the link functions). Are there any other functions where I had to add or modify something? What else can I do? Thank you for your help! Johanna Brandt (I'm using R 2.0.1 under Windows 2000) ## Example for geese() from the R-Help ##################### I took the example from the help: > data(ohio) > summary(geese(resp ~ age + smoke + age:smoke, id=id, data=ohio, + family=binomial(link="logit"), corstr="exch", scale.fix=TRUE)) Call: geese(formula = resp ~ age + smoke + age:smoke, id = id, data = ohio, family = binomial(link = "logit"), scale.fix = TRUE, corstr = "exch") Mean Model: Mean Link: logit Variance to Mean Relation: binomial Coefficients: estimate san.se wald p (Intercept) -1.90049529 0.11908698 254.6859841 0.00000000 age -0.14123592 0.05820089 5.8888576 0.01523698 smoke 0.31382583 0.18575838 2.8541747 0.09113700 age:smoke 0.07083184 0.08852946 0.6401495 0.42365667 Scale is fixed. Correlation Model: Correlation Structure: exch Correlation Link: identity Estimated Correlation Parameters: estimate san.se wald p alpha 0.354531 0.03582698 97.92378 0 Returned Error Value: 0 Number of clusters: 537 Maximum cluster size: 4 > > ## Korrigiert > summary(fit.korr <- geese(resp ~ age + smoke + age:smoke, id=id, data=ohio, + family=binomial(link="corlogit"), corstr="exch", scale.fix=TRUE)) Call: geese(formula = resp ~ age + smoke + age:smoke, id = id, data = ohio, family = binomial(link = "corlogit"), scale.fix = TRUE, corstr = "exch") Mean Model: Mean Link: corlogit Variance to Mean Relation: binomial Coefficients: estimate san.se wald p (Intercept) -1.12581067 0.06344341 314.8891093 0.00000000 age -0.07680433 0.03128947 6.0252497 0.01410264 smoke 0.17083868 0.10162807 2.8258236 0.09275930 age:smoke 0.03672858 0.04872412 0.5682249 0.45096515 Scale is fixed. Correlation Model: Correlation Structure: exch Correlation Link: identity Estimated Correlation Parameters: estimate san.se wald p alpha 0.3545883 0.03583136 97.9315 0 Returned Error Value: 0 Number of clusters: 537 Maximum cluster size: 4 ## Example for gee() from the R-Help ####################### if(require(MASS)) { data(OME) ## not fully appropriate link for these data. (fm.korr <- gee(cbind(Correct, Trials-Correct) ~ Loud + Age + OME, id = ID, data = OME, family = binomial(link="corlogit"), corstr = "exchangeable")) summary(fm.korr) }