can you do Logistic regression in R, if so how do you do it and how do you test the fit of a model? -- View this message in context: http://n4.nabble.com/Logistic-regression-tp1059870p1059870.html Sent from the R help mailing list archive at Nabble.com.
?glm. Run the examples. This might also help: http://nlp.stanford.edu/manning/courses/ling289/logistic.pdf DM On Thu, Jan 21, 2010 at 1:17 PM, DispersionMap <frenchcr@btinternet.com>wrote:> > can you do Logistic regression in R, if so how do you do it and how do you > test the fit of a model? > -- > View this message in context: > http://n4.nabble.com/Logistic-regression-tp1059870p1059870.html > Sent from the R help mailing list archive at Nabble.com. > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >[[alternative HTML version deleted]]
you may use the function glm() to do all of it, see the R help for more about. Em 21/01/2010 19:17, DispersionMap < frenchcr at btinternet.com > escreveu: can you do Logistic regression in R, if so how do you do it and how do you test the fit of a model? -- View this message in context: http://n4.nabble.com/Logistic-regression-tp1059870p1059870.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help at r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.
Dear someone, Take a look at drc and Hmisc/Design packages. Next time could be polite you identify yourself bests milton On Thu, Jan 21, 2010 at 4:17 PM, DispersionMap <frenchcr@btinternet.com>wrote:> > can you do Logistic regression in R, if so how do you do it and how do you > test the fit of a model? > -- > View this message in context: > http://n4.nabble.com/Logistic-regression-tp1059870p1059870.html > Sent from the R help mailing list archive at Nabble.com. > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html<http://www.r-project.org/posting-guide.html> > and provide commented, minimal, self-contained, reproducible code. >[[alternative HTML version deleted]]
Dear R? listmates, I am doing a cross validation with rda.cv to set alpha and delta parameters in a training set counting on 614 instances. The result of the process in R is: rda.cv(fit = z, x = Tt, y = TtL, nfold = 10) $nonzero ? ? ? ? ? delta alpha? 0 0.333 0.667 1 1.333 1.667 2 2.333 2.667 3 ? 0? ? ? ? ? 9? ? ? ? 9? ? ? ? 9 8? ? ? ? 8? ? ? ? 8 8? ? ? ? 7? ? ? ? 6 4 ? 0.11 9? ? ? ? 9? ? ? ? 8 8? ? ? ? 6? ? ? ? 3 1? ? ? ? 1? ? ? ? 1 0 ? 0.22 9? ? ? ? 8? ? ? ? 7 6? ? ? ? 2? ? ? ? 1 1? ? ? ? 0? ? ? ? 0 0 ? 0.33 9? ? ? ? 8? ? ? ? 6 2? ? ? ? 1? ? ? ? 1 0? ? ? ? 0? ? ? ? 0 0 ? 0.44 9? ? ? ? 8? ? ? ? 4 2? ? ? ? 1? ? ? ? 0 0? ? ? ? 0? ? ? ? 0 0 ? 0.55 9? ? ? ? 6? ? ? ? 2 1? ? ? ? 0? ? ? ? 0 0? ? ? ? 0? ? ? ? 0 0 ? 0.66 9? ? ? ? 6? ? ? ? 2 1? ? ? ? 0? ? ? ? 0 0? ? ? ? 0? ? ? ? 0 0 ? 0.77 9? ? ? ? 6? ? ? ? 2 1? ? ? ? 0? ? ? ? 0 0? ? ? ? 0? ? ? ? 0 0 ? 0.88 9? ? ? ? 5? ? ? ? 2 0? ? ? ? 0? ? ? ? 0 0? ? ? ? 0? ? ? ? 0 0 ? 0.99 9? ? ? ? 4? ? ? ? 1 0? ? ? ? 0? ? ? ? 0 0? ? ? ? 0? ? ? ? 0 0 $cv.err ? ? ? ? ? delta alpha? ? 0 0.333 0.667? ? 1 1.333 1.667? ? 2 2.333 2.667? ? 3 ? 0? ? ? ? ? 22? ? ? 23? ? ? 23? 25? ? ? 25? ? ? 25? 23? ? ? ? 25? ? ? ? 26? 34 ? 0.11 24? ? ? 24? ? ? 25? 28? ? ? 31? ? ? ? 54? 64? ? ? ? 72? ? ? 160 214 ? 0.22 24? ? ? 25? ? ? 29? 39? ? ? 58? ? ? ? 72 144? ? ? 214? ? 214 214 ? 0.33 24? ? ? 27? ? ? 36? 56? ? ? 72? ? ? 160 214? ? ? 214? ? 214 214 ? 0.44 25? ? ? 30? ? ? 53? 64? ? 126? ? ? 214 214? ? 214? ? 214 214 ? 0.55 25? ? ? 32? ? ? 53? 73? ? 214? ? ? 214 214? ? 214? ? 214 214 ? 0.66 25? ? ? 35? ? ? 57 127? ? 214? ? 214 214? ? 214? ? 214 214 ? 0.77 25? ? ? 37? ? ? 64 201? ? 214? ? 214 214? ? 214? ? 214 214 ? 0.88 25? ? ? 42? ? ? 76 214? ? 214? ? 214 214? ? 214? ? 214 214 ? 0.99 25? ? ? 49? ? ? 85 214? ? 214? ? 214 214? ? 214? ? 214 214 My doubt is: What do these numbers in the second table really represent? I am considerind that they are the averaged number of missclassifications for each set. Am? I right? Thanks, Alexandre.
Dear R? listmates, I am doing a cross validation with rda.cv to set alpha and delta parameters in a training set counting on 614 instances. The result of the process in R is: ? ? ? ? ? delta alpha? 0 0.333 0.667 1 1.333 1.667 2 2.333 2.667 3 ? 0? ? ? 9? ? ? ? 9? ? ? ? 9 8? ? ? ? 8? ? ? ? 8 8? ? ? ? 7? ? ? ? 6 4 ? 0.11 9? ? ? ? 9? ? ? ? 8 8? ? ? ? 6? ? ? ? 3 1? ? ? ? 1? ? ? ? 1 0 ? 0.22 9? ? ? ? 8? ? ? ? 7 6? ? ? ? 2? ? ? ? 1 1? ? ? ? 0? ? ? ? 0 0 ? 0.33 9? ? ? ? 8? ? ? ? 6 2? ? ? ? 1? ? ? ? 1 0? ? ? ? 0? ? ? ? 0 0 ? 0.44 9? ? ? ? 8? ? ? ? 4 2? ? ? ? 1? ? ? ? 0 0? ? ? ? 0? ? ? ? 0 0 ? 0.55 9? ? ? ? 6? ? ? ? 2 1? ? ? ? 0? ? ? ? 0 0? ? ? ? 0? ? ? ? 0 0 ? 0.66 9? ? ? ? 6? ? ? ? 2 1? ? ? ? 0? ? ? ? 0 0? ? ? ? 0? ? ? ? 0 0 ? 0.77 9? ? ? ? 6? ? ? ? 2 1? ? ? ? 0? ? ? ? 0 0? ? ? ? 0? ? ? ? 0 0 ? 0.88 9? ? ? ? 5? ? ? ? 2 0? ? ? ? 0? ? ? ? 0 0? ? ? ? 0? ? ? ? 0 0 ? 0.99 9? ? ? ? 4? ? ? ? 1 0? ? ? ? 0? ? ? ? 0 0? ? ? ? 0? ? ? ? 0 0 $cv.err ? ? ? ? ? delta alpha? ? 0 0.333 0.667? ? 1 1.333 1.667? ? 2 2.333 2.667? ? 3 ? 0? ? ? 22? ? ? 23? ? ? 23? 25? ? ? 25? ? ? 25? 23? ? ? 25? ? ? 26? 34 ? 0.11 24? ? ? 24? ? ? 25? 28? ? ? 31? ? ? 54? 64? ? ? 72? ? 160 214 ? 0.22 24? ? ? 25? ? ? 29? 39? ? ? 58? ? ? 72 144? ? 214? ? 214 214 ? 0.33 24? ? ? 27? ? ? 36? 56? ? ? 72? ? 160 214? ? 214? ? 214 214 ? 0.44 25? ? ? 30? ? ? 53? 64? ? 126? ? 214 214? ? 214? ? 214 214 ? 0.55 25? ? ? 32? ? ? 53? 73? ? 214? ? 214 214? ? 214? ? 214 214 ? 0.66 25? ? ? 35? ? ? 57 127? ? 214? ? 214 214? ? 214? ? 214 214 ? 0.77 25? ? ? 37? ? ? 64 201? ? 214? ? 214 214? ? 214? ? 214 214 ? 0.88 25? ? ? 42? ? ? 76 214? ? 214? ? 214 214? ? 214? ? 214 214 ? 0.99 25? ? ? 49? ? ? 85 214? ? 214? ? 214 214? ? 214? ? 214 214 My doubt is: What do these numbers in the second table really represent? I am considerind that they are the averaged number of missclassifications for each set. Am? I right? Thanks, Alexandre.