I would like to use blackboost on a training data set, then use the output to predict a testing dataset, and finally evaluate the errors. An example of the code I have written is the following: train <- read.csv ("train.csv") test <- read.csv ("test.csv") boost <- blackboost (ogred ~ elev + slope + aspect, data = train) pred <- predict (boost, newdata = test) pred yields the following matrix: [1] 2.697689 3.551352 2.761541 3.271642 2.313459 2.207247 1.591521 3.752257 [9] 2.976793 2.522219 1.988676 2.092666 3.550917 2.134925 2.534842 2.922136 [17] 2.277653 2.922136 2.922136 4.593132 2.922136 3.773274 4.647789 3.773274 [25] 4.647789 2.369810 2.645859 2.344808 1.760087 2.918108 2.714825 2.972284 [33] 3.466973 2.001098 1.706958 1.749830 1.960923 1.960923 2.451370 2.835255 [41] 2.443585 3.392883 3.164294 2.615430 I would like to know how to use this output to classify data the testing dataset. Any advice is much appreciated. Thank you, Kirsten -- Kirsten Barrett Mendenhall Postdoctoral Fellow, USGS Alaska Science Center 4210 University Drive Anchorage, AK phone (907) 786 7419 fax (907) 786 7401 kbarrett at usgs.gov
I would like to use blackboost on a training data set, then use the output to predict a testing dataset, and finally evaluate the errors. An example of the code I have written is the following: train <- read.csv ("train.csv") test <- read.csv ("test.csv") boost <- blackboost (ogred ~ elev + slope + aspect, data = train) pred <- predict (boost, newdata = test) pred yields the following matrix: [1] 2.697689 3.551352 2.761541 3.271642 2.313459 2.207247 1.591521 3.752257 [9] 2.976793 2.522219 1.988676 2.092666 3.550917 2.134925 2.534842 2.922136 [17] 2.277653 2.922136 2.922136 4.593132 2.922136 3.773274 4.647789 3.773274 [25] 4.647789 2.369810 2.645859 2.344808 1.760087 2.918108 2.714825 2.972284 [33] 3.466973 2.001098 1.706958 1.749830 1.960923 1.960923 2.451370 2.835255 [41] 2.443585 3.392883 3.164294 2.615430 I would like to know how to use this output to classify data the testing dataset. Any advice is much appreciated. Thank you, Kirsten -- Kirsten Barrett Mendenhall Postdoctoral Fellow, USGS Alaska Science Center 4210 University Drive Anchorage, AK phone (907) 786 7419 fax (907) 786 7401 kbarrett at usgs.gov
I would like to use blackboost on a training data set, then use the output to predict a testing dataset, and finally evaluate the errors. An example of the code I have written is the following: train <- read.csv ("train.csv") test <- read.csv ("test.csv") boost <- blackboost (ogred ~ elev + slope + aspect, data = train) pred <- predict (boost, newdata = test) pred yields the following matrix: [1] 2.697689 3.551352 2.761541 3.271642 2.313459 2.207247 1.591521 3.752257 [9] 2.976793 2.522219 1.988676 2.092666 3.550917 2.134925 2.534842 2.922136 [17] 2.277653 2.922136 2.922136 4.593132 2.922136 3.773274 4.647789 3.773274 [25] 4.647789 2.369810 2.645859 2.344808 1.760087 2.918108 2.714825 2.972284 [33] 3.466973 2.001098 1.706958 1.749830 1.960923 1.960923 2.451370 2.835255 [41] 2.443585 3.392883 3.164294 2.615430 I would like to know how to use this output to classify data the testing dataset. Any advice is much appreciated. Thank you, Kirsten -- Kirsten Barrett Mendenhall Postdoctoral Fellow, USGS Alaska Science Center 4210 University Drive Anchorage, AK phone (907) 786 7419 fax (907) 786 7401 kbarrett at usgs.gov