hi! i've tried to run this code in R using the VGAM package. I know it's not a good fit. But i encountered a problem in calling the estimated parameter values using fit$estimate. But the codes worked if i put the estimated values just like in this case: y.l <- dgpd(x, scale=0.979421685 , shape=-0.003183445 ) But not in this one: y.g <- dgpd(x, scale=fit$estimate[1], shape=fit$estimate[2]) Can anyone help me how to call out the estimated parameters automatically instead of writing each of the estimated values? So i can use them in future graphing. I know this will cause a big problem if i'll keep on changing my data. Further, it will be a time constraint problem if i'll fit distributions to data using many VGAM distributions. Please see the R code below for reference. Thank you for the help! Filame ---------------------------------------------------------------------------------------------------- library(VGAM) z<-rgamma(10000,rate=1, shape=1) fit <- vglm(z~1, gpd(threshold=0),trace=TRUE) coef(fit, mat=TRUE) Coef(fit) x<-seq(from=0, to=40, by=1) y.l <- dgpd(x, scale=0.979421685 , shape=-0.003183445 ) truehist(z) lines(x, y.l, col=2) y.g <- dgpd(x, scale=fit$estimate[1], shape=fit$estimate[2]) truehist(z) lines(x, y.g, col=2) ERROR: Error in dgpd(x, scale = fit$estimate[1], shape = fit$estimate[2]) : "scale" must be positive In addition: Warning message: $ operator not defined for this S4 class, returning NULL in: fit$estimate -------------------------------------------------------------------------------------------------------- --------------------------------- [[alternative HTML version deleted]]