I think it's a scoping problem. Your function NLL() looks for
"new" in
the environment in which NLL() was defined, but you generate your
simulated datasets in a different environment (local to sim.estim()).
There are a number of ways to deal with this:
- pass the dataset as a parameter to NLL()
- manipulate environments with "assign()" or "<<-"
- put "new" in its own environment and use "assign()" and
"get()"
- define NLL() within sim.estim() after generating "new", like
"NLL <-
negative.log.likelihood(new)" where negative.log.likelihood() is a
function like
negative.log.likelihood <- function(new) {
NLL <- function(coef) {
... (your definition here)...
}
NLL
}
This defines a new NLL() each time, using the dataset "new" just
generated.
Reid Huntsinger
Simon Ruegg wrote:
>Dear all,
>
>
>
>I am trying to evaluate the optimisation behaviour of a function. Originally
>I have optimised a model with real data and got a set of parameters. Now I
>am creating simulated data sets based on these estimates. With these
>simulations I am estimating the parameters again to see how variable the
>estimation is. To this end I have written a loop which should generate a new
>simulated data set each time. However, the optimisation algorithm, which
>works fine if only one data set is used, does not recognise the simulated
>data in the loop. Can anyone tell me where the error is? The code is below.
>
>
>
>Thanks for your help
>
>
>
>Simon
>
>
>
>
>
># The loop in which nothing works anymore. The NLL in the optim function
>appears not to recognise the "new" data set. The functions used by
this loop
>are given below.
>
>
>
>sim.estim=function(r)
>
>{
>
> res=matrix(nrow=r,ncol=5)
>
> for (s in 1:r)
>
> {
>
> new=new.set()
>
>
>Min=optim(c(0.5,0.5,0.01,0.1),NLL,method="L-BFGS-B",lower=c(0,0,0,0))
>
> res[s,1]=Min$par[1]
>
> res[s,2]=Min$par[2]
>
> res[s,3]=Min$par[3]
>
> res[s,4]=Min$par[4]
>
> res[s,5]=Min$value[1]
>
> }
>
>return(res)
>
>}
>
>
>
>
>
>
>
># function to create a new data set. Works fine on its own
>
>
>
>new.set=function()
>
>{
>
> tmp=matrix(nrow=510,ncol=2)
>
> v=numeric()
>
> sim=Model_1(1.2761707, 0.1953354, 2.7351930, 0.1032929)
>
>
>
> tmp[,1]=sample(sim[,1],510,replace=T)
>
> v=runif(510,0,1)
>
>
>
> for (k in 1 : 510)
>
> {
>
> for (n in 1 : length(sim[,1]))
>
> {
>
> if (tmp[k,1]==sim[n,1] &&
v[k]<=sim[n,2]){tmp[k,2]=1}
>
> if(tmp[k,1]==sim[n,1] && v[k]>sim[n,2])
{tmp[k,2]=0}
>
> }
>
> }
>
>return(tmp)
>
>}
>
>
>
>
>
># The model to be fitted
>
>
>
>Model_1=function(beta0_mod,mu_mod,k_mod,I_mod)
>
>{
>
> parms = c(beta0=beta0_mod, mu=mu_mod, k=k_mod)
>
> my.atol = 1e-6
>
>
>times1=c(0,0.002884615,0.003846154,0.005769231,0.009615385,0.01,0.019230769)
>
>
> times2=c(0.028846154,0.038461538,0.057692308,
>0.076923077,0.083333333,0.096153846)
>
>
>times3=c(0.115384615,0.125,0.134615385,0.166666667,0.25,0.416666667,0.5)
>
> times4=c(0.58333333,0.666666667,0.75,0.83333333,0.916666667,1)
>
> times5=c( 1.166666667,1.25,1.5,1.6,1.75,2,2.5)
>
> times6=seq(3,20)
>
> times = c(times1,times2,times3,times4,times5,times6)
>
> ODE_sys = function(t, x, w)
#w=c("beta0","mu","k")
>
> {
>
> I=x[1]
>
>
>
>
dI=-w["mu"]*I+w["beta0"]*exp(-w["k"]*t)*(1-I)
>
>
>
> list(c(dI),c(S=1-I))
>
> }
>
>
>
> output = lsoda(c(I_mod),times,ODE_sys, parms, rtol=1e-6,
atol>my.atol)
>
> return(output)
>
>}
>
>
>
># The negative log likelihood of this model given a data set
"new". This
>works fine if it is used in the optim() routine with only one data set.
>
>
>
>NLL=function(coef)
>
>{
>
> beta0=coef[1]
>
> mu=coef[2]
>
> k=coef[3]
>
> I=coef[4]
>
>
>
> data_sim=Model_1(beta0,mu,k,I)
>
>
>
> LLsum=0 #log likelihood sum
>
>
>
> for (j in 1:length(data_sim[,1]))
>
> {
>
> if (data_sim[j,2]<0 || data_sim[j,3]<0)
>
> {return(1500)}
>
>
>
> for (i in 1:length(new[,1]))
>
> {
>
> if (new[i,1]==data_sim[j,1] && is.na(new[i,1])==F
&&
>is.na(data_sim[j,1])==F)
>
> # if age of real data = age of simulated model and not
>equal to NA
>
> {
>
> if (is.na(new[i,2])==F &&
is.na(data_sim[j,2])==F &&
>is.na(data_sim[j,3])==F)
>
> # if state of real data and state of simulated model
>are not equal to NA
>
> {
>
> tmp1=new[i,2]*log(data_sim[j,2])
>
> tmp2=(1-new[i,2])*log(data_sim[j,3])
>
>
>
> if (tmp1=="-Inf" ||
tmp1=="NaN"){tmp1=-700}
>
> if (tmp2=="-Inf" ||
tmp2=="NaN"){tmp2=-700}
>
> LLsum=LLsum+tmp1+tmp2
>
> }
>
> }
>
>
>
> }
>
> }
>
>
>
>return(-LLsum)
>
>}
>
>
>
>
>
>
>
>
>
>
>
>********************************************************************
>
>Simon Ruegg
>
>Dr.med.vet., PhD student
>
>Institute for Parasitology
>
>Winterthurstr. 266a
>
>8057 Zurich
>
>Switzerland
>
>
>
>phone: +41 44 635 85 93
>
>fax: +41 44 635 89 07
>
>e-mail: s.ruegg at access.unizh.ch
>
>
>
>
> [[alternative HTML version deleted]]
>
>______________________________________________
>R-help at stat.math.ethz.ch mailing list
>https://stat.ethz.ch/mailman/listinfo/r-help
>PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
>and provide commented, minimal, self-contained, reproducible code.
>
>
>