Hi everyone, I have a question about mediation when there is an interaction between 2 categorical variables, one with two levels and one with three levels. Using the ‘mediation’ package by Tingley and colleagues in R, I’m trying to conduct a bootstrapped mediation analysis for an interaction between a 2-level categorical IV (‘condstorm’) and another 3-level categorical IV (‘condmean’). The mediator (‘trustmed2’) is dichotomous, and the dependent variable (‘AttInd’) is continuous. Categorical 2-level IV ‘condstorm’ table(d$condstorm) nostorm storm 604 570 Categorical 3-level IV ‘condmean’ table(d$condmean) both high mean 413 375 386 Dichotomous mediator ‘trustmed2’ table(d$trustmed2) 0 1 305 866 Continuous DV ‘AttInd’ summary(d$AttInd) Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.0000 0.3571 0.6200 0.5801 0.8214 1.0000 3 The code and output for the model with the mediator is: contrasts(d$condstorm) storm nostorm 0 storm 1 contrasts(d$condmean) nonevhigh nonevboth both 0 1 high 1 0 mean 0 0 med.fit <- glm(trustmed2 ~ condmean*condstorm + gwbelief + trustmed1 + coastdwell + partyID + polor + gender + age + race + educ + income + region, weights=weight1, data = d, family = binomial('probit')) summary(med.fit) Call: glm(formula = trustmed2 ~ condmean * condstorm + gwbelief + trustmed1 + coastdwell + partyID + polor + gender + age + race + educ + income + region, family binomial("probit"), data = d, weights = weight1) Deviance Residuals: Min 1Q Median 3Q Max -3.9982 -0.1429 0.2196 0.4594 3.2721 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -1.876115 0.284494 -6.595 4.27e-11 *** condmeannonevhigh 0.170809 0.175454 0.974 0.33029 condmeannonevboth 0.497041 0.181383 2.740 0.00614 ** condstormstorm 0.285569 0.182081 1.568 0.11680 gwbeliefnotvref 0.056512 0.631022 0.090 0.92864 gwbeliefnotvprobs 0.746556 0.129610 5.760 8.41e-09 *** trustmed1 1.908566 0.121064 15.765 < 2e-16 *** coastdwellyes 0.320369 0.128445 2.494 0.01262 * partyIDvdem 0.585477 0.148862 3.933 8.39e-05 *** partyIDvref -0.468275 0.654078 -0.716 0.47403 partyIDvrep 0.058146 0.130621 0.445 0.65621 polorvref -0.316949 0.508007 -0.624 0.53269 polorvlib -0.058482 0.160609 -0.364 0.71577 polorvcons -0.369565 0.122246 -3.023 0.00250 ** genderMale -0.009229 0.105253 -0.088 0.93013 agev1824 0.235127 0.194856 1.207 0.22756 agev2534 0.099723 0.178256 0.559 0.57587 agev3544 0.119399 0.169987 0.702 0.48243 agev4554 0.221921 0.176420 1.258 0.20842 agev5564 0.173343 0.170355 1.018 0.30890 racevhisp 0.033141 0.177162 0.187 0.85161 racevblack -0.323867 0.188305 -1.720 0.08545 . racevother 0.475179 0.234313 2.028 0.04256 * educhsvsome -0.002255 0.132574 -0.017 0.98643 educhsvcollgrad 0.201980 0.146240 1.381 0.16723 educhsvref 1.304337 0.666427 1.957 0.05032 . incomev3050 -0.095963 0.159290 -0.602 0.54688 incomev5075 0.184528 0.168946 1.092 0.27473 incomev75100 0.028269 0.191474 0.148 0.88263 incomev100 -0.249873 0.167648 -1.490 0.13610 regionvmw -0.058581 0.163619 -0.358 0.72032 regionvne 0.315495 0.177227 1.780 0.07505 . regionvs 0.204790 0.145384 1.409 0.15895 condmeannonevhigh:condstormstorm -0.061962 0.263472 -0.235 0.81407 condmeannonevboth:condstormstorm -0.665467 0.253958 -2.620 0.00878 ** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 1316.98 on 1170 degrees of freedom Residual deviance: 767.03 on 1136 degrees of freedom (3 observations deleted due to missingness) AIC: 836.49 Number of Fisher Scoring iterations: 6 And the code and output for the model with the mediator included as a predictor on the dependent variable: out.fit <- lm(AttInd ~ trustmed2 + condmean*condstorm + trustmed1 + gwbelief + coastdwell + partyID + polor + gender + age + race + educ + income + region, weights=weight1, data = d) summary(out.fit) Call: lm(formula = AttInd ~ trustmed2 + condmean * condstorm + trustmed1 + gwbelief + coastdwell + partyID + polor + gender + age + race + educ + income + region, data = d, weights = weight1) Weighted Residuals: Min 1Q Median 3Q Max -0.79365 -0.12054 0.00739 0.12351 0.72377 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.754e-01 3.411e-02 5.143 3.18e-07 *** trustmed2 2.777e-01 1.940e-02 14.313 < 2e-16 *** condmeannonevhigh -8.754e-03 2.174e-02 -0.403 0.687311 condmeannonevboth 2.548e-02 2.148e-02 1.186 0.235756 condstormstorm 3.977e-02 2.250e-02 1.767 0.077433 . trustmed1 2.084e-02 2.014e-02 1.035 0.301053 gwbeliefnotvref -1.063e-01 9.071e-02 -1.172 0.241589 gwbeliefnotvprobs 1.574e-01 1.818e-02 8.656 < 2e-16 *** coastdwellyes 1.100e-02 1.485e-02 0.740 0.459293 partyIDvdem 6.283e-02 1.618e-02 3.884 0.000109 *** partyIDvref -2.558e-01 8.716e-02 -2.934 0.003408 ** partyIDvrep -4.893e-02 1.688e-02 -2.898 0.003829 ** polorvref 8.509e-02 6.617e-02 1.286 0.198751 polorvlib 6.199e-02 1.742e-02 3.558 0.000389 *** polorvcons -7.015e-03 1.571e-02 -0.447 0.655204 genderMale -5.778e-03 1.267e-02 -0.456 0.648363 agev1824 4.624e-03 2.391e-02 0.193 0.846692 agev2534 -1.773e-02 2.222e-02 -0.798 0.425121 agev3544 2.952e-02 2.107e-02 1.401 0.161448 agev4554 1.590e-02 2.159e-02 0.736 0.461613 agev5564 -9.967e-03 2.073e-02 -0.481 0.630765 racevhisp 4.936e-02 2.030e-02 2.432 0.015174 * racevblack -1.585e-02 2.224e-02 -0.713 0.476104 racevother 4.969e-02 2.518e-02 1.973 0.048687 * educhsvsome -1.016e-02 1.612e-02 -0.630 0.528528 educhsvcollgrad -1.209e-02 1.713e-02 -0.706 0.480595 educhsvref 2.383e-01 8.213e-02 2.901 0.003791 ** incomev3050 -9.128e-04 1.964e-02 -0.046 0.962941 incomev5075 1.522e-02 1.996e-02 0.762 0.446132 incomev75100 -3.185e-02 2.280e-02 -1.397 0.162813 incomev100 1.344e-02 2.013e-02 0.668 0.504422 regionvmw 3.467e-02 2.027e-02 1.710 0.087541 . regionvne 1.861e-02 2.015e-02 0.924 0.355812 regionvs -7.531e-05 1.716e-02 -0.004 0.996499 condmeannonevhigh:condstormstorm -4.354e-03 3.152e-02 -0.138 0.890175 condmeannonevboth:condstormstorm -5.284e-02 3.090e-02 -1.710 0.087514 . --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.2103 on 1135 degrees of freedom (3 observations deleted due to missingness) Multiple R-squared: 0.4546, Adjusted R-squared: 0.4378 F-statistic: 27.03 on 35 and 1135 DF, p-value: < 2.2e-16 The model without the mediator is: out.fit <- lm(AttInd ~ condmean*condstorm + trustmed1 + gwbelief + coastdwell + partyID + polor + gender + age + race + educ + income + region, weights=weight1, data = d) summary(out.fit) Call: lm(formula = AttInd ~ condmean * condstorm + trustmed1 + gwbelief + coastdwell + partyID + polor + gender + age + race + educ + income + region, data = d, weights = weight1) Weighted Residuals: Min 1Q Median 3Q Max -1.1727 -0.1371 0.0130 0.1366 0.8077 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.1940313 0.0370161 5.242 1.89e-07 *** condmeannonevhigh -0.0019461 0.0236085 -0.082 0.93432 condmeannonevboth 0.0474046 0.0232707 2.037 0.04187 * condstormstorm 0.0527524 0.0244159 2.161 0.03094 * trustmed1 0.1833521 0.0180674 10.148 < 2e-16 *** gwbeliefnotvref -0.1093369 0.0985135 -1.110 0.26729 gwbeliefnotvprobs 0.2074035 0.0193781 10.703 < 2e-16 *** coastdwellyes 0.0241253 0.0161011 1.498 0.13432 partyIDvdem 0.0858665 0.0174835 4.911 1.04e-06 *** partyIDvref -0.2999944 0.0945990 -3.171 0.00156 ** partyIDvrep -0.0468268 0.0183366 -2.554 0.01079 * polorvref 0.0560635 0.0718304 0.780 0.43526 polorvlib 0.0568556 0.0189179 3.005 0.00271 ** polorvcons -0.0293808 0.0169730 -1.731 0.08372 . genderMale -0.0072970 0.0137554 -0.530 0.59588 agev1824 0.0162995 0.0259507 0.628 0.53007 agev2534 -0.0134314 0.0241301 -0.557 0.57790 agev3544 0.0326065 0.0228762 1.425 0.15433 agev4554 0.0281826 0.0234333 1.203 0.22935 agev5564 -0.0042263 0.0225102 -0.188 0.85111 racevhisp 0.0484325 0.0220418 2.197 0.02820 * racevblack -0.0292002 0.0241349 -1.210 0.22658 racevother 0.0682464 0.0273067 2.499 0.01259 * educhsvsome -0.0130208 0.0175088 -0.744 0.45723 educhsvcollgrad -0.0052682 0.0185980 -0.283 0.77703 educhsvref 0.3522019 0.0887800 3.967 7.73e-05 *** incomev3050 -0.0065261 0.0213276 -0.306 0.75967 incomev5075 0.0200734 0.0216792 0.926 0.35468 incomev75100 -0.0336651 0.0247648 -1.359 0.17429 incomev100 -0.0006802 0.0218303 -0.031 0.97515 regionvmw 0.0293874 0.0220138 1.335 0.18216 regionvne 0.0317515 0.0218553 1.453 0.14655 regionvs 0.0085483 0.0186236 0.459 0.64632 condmeannonevhigh:condstormstorm -0.0068725 0.0342330 -0.201 0.84092 condmeannonevboth:condstormstorm -0.0860072 0.0334623 -2.570 0.01029 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.2284 on 1136 degrees of freedom (3 observations deleted due to missingness) Multiple R-squared: 0.3562, Adjusted R-squared: 0.3369 F-statistic: 18.49 on 34 and 1136 DF, p-value: < 2.2e-16 We want to examine mediation in this interaction effect. We have tried using the code: mediate(med.fit, out.fit, treat = 'condstorm', control.value = 'nostorm', treat.value = 'storm', mediator = 'trustmed2', covariates=list(condmean='both'), boot=TRUE, sims=5000) Which gave the following output: Causal Mediation Analysis Confidence Intervals Based on Nonparametric Bootstrap (Inference Conditional on the Covariate Values Specified in `covariates') Estimate 95% CI Lower 95% CI Upper p-value ACME -0.017705 -0.036626 -0.003284 0.04 ADE -0.014082 -0.045811 0.023155 0.53 Total Effect -0.031788 -0.069698 0.012371 0.14 Prop. Mediated 0.516591 1.174065 8.857665 0.04 Sample Size Used: 1171 Simulations: 5000 But this mediation only compares respondents at the level of “both” for the condmean variable and excludes other conditions, so examines the effect of "Both Condmean x Condstorm" MINUS the effect "condstorm", which is -.08 - (.05) = -.03 (the total effect in the output above). The total effect should instead be the same as the coefficient of "condmeannonevboth:condstormstorm" in the second interaction term in the model, which is -.086, p < .01. Is it possible for us to examine this effect using the ‘mediation’ package in R? Any help would be much appreciated! ------------------------- Lauren C. Howe PhD Candidate Stanford University Department of Psychology Jordan Hall, Building 420 450 Serra Mall Stanford, CA 94305 Tel.: +1.434.305.8363 <Lch4k@virginia.edu> [[alternative HTML version deleted]]