Dear All, I am new to ordinal logistic regression. Using ordinal regression within the R Commander GUI, I have generated an independent variable that is significant, but whose 95% confidence intervals slightly crosses "1". Is this possible? Here is the syntax and output: polr(formula = CDIcat ~ Employment, data = CDIallvariables, Hess = TRUE, method = "logistic") Coefficients: Value Std. Error t value Employment[T.Parttime] -0.2523 0.2289 -1.102 Employment[T.fulltime] -0.4425 0.2484 -1.781 Intercepts: Value Std. Error t value 0|1 -6.2182 1.0045 -6.1903 1|2 -1.9272 0.1480 -13.0213 2|3 -0.9892 0.1177 -8.4068 3|4 -0.4036 0.1094 -3.6880 4|5 -0.0801 0.1078 -0.7426 5|6 0.3187 0.1088 2.9297 6|7 1.0335 0.1196 8.6445 7|8 1.3607 0.1290 10.5445 8|9 2.3018 0.1758 13.0909 9|10 6.0283 1.0028 6.0116 Residual Deviance: 1960.430 AIC: 1984.430 (1 observation deleted due to missingness) When I convert this to OR's ( using the Epicalc package) here is the problem I have with the variable "Employment[T.fulltime]" which is significant ,but has too wide a confidence interval. How would I interpret this ? ordinal.or.display(OrdRegModel.5) Ordinal OR lower95ci upper95ci P value Employment[T.Parttime] 0.777 0.496 1.217 1.36e-01 Employment[T.fulltime] 0.642 0.395 1.045 3.78e-02 Russell " Skip" Barbour Ph.D. Associate Director for Statistics Center for Interdisciplinary Research on AIDS Yale School of Medicine 135 College St. Suit 200 New Haven , CT. 06510 Tel: 203 764 4332 Fax: 203 764 4353 Email: russell.barbour@yale.edu<mailto:russell.barbour@yale.edu> Doubt grows with knowledge. Johann Wolfgang von Goethe<http://www.brainyquote.com/quotes/quotes/j/johannwolf380192.html> [[alternative HTML version deleted]]