One option is to subtract the continuous variable from y before doing
the regression (this works with any regression package/function). The
probably better way in R is to use the 'offset' function:
formula = I(log(data$AB.obs + 1, 10)-log(data$SIZE,10)) ~
log(data$SIZE, 10) + data$Y
formula = log(data$AB.obs + 1) ~ offset( log(data$SIZE,10) ) +
log(data$SIZE,10) + data$Y
Or you can use a function like 'confint' to find the confidence
interval for the slope and see if 1 is in the interval.
On Mon, Apr 23, 2012 at 12:11 PM, Mark Na <mtb954 at gmail.com>
wrote:> Dear R-helpers,
>
> I would like to test if the slope corresponding to a continuous variable in
> my model (summary below) is different than one.
>
> I would appreciate any ideas for how I could do this in R, after having
> specified and run this model?
>
> Many thanks,
>
> Mark Na
>
>
>
> Call:
> lm(formula = log(data$AB.obs + 1, 10) ~ log(data$SIZE, 10) +
> ? data$Y)
>
> Residuals:
> ? ?Min ? ? ? 1Q ? Median ? ? ? 3Q ? ? ?Max
> -0.94368 -0.13870 ?0.04398 ?0.17825 ?0.63365
>
> Coefficients:
> ? ? ? ? ? ? ? ? ?Estimate Std. Error t value ?Pr(>|t|)
> (Intercept) ? ? ? ?-1.18282 ? ?0.09120 -12.970 ? < 2e-16 ***
> log(data$SIZE, 10) ?0.56009 ? ?0.02564 ?21.846 ? < 2e-16 ***
> data$Y2008 ? ? ? ? ?0.16825 ? ?0.04366 ? 3.854 ?0.000151 ***
> data$Y2009 ? ? ? ? ?0.20310 ? ?0.04707 ? 4.315 0.0000238 ***
> ---
> Signif. codes: ?0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
>
> Residual standard error: 0.2793 on 228 degrees of freedom
> Multiple R-squared: 0.6768, ? ? Adjusted R-squared: 0.6726
> F-statistic: 159.2 on 3 and 228 DF, ?p-value: < 2.2e-16
>
> ? ? ? ?[[alternative HTML version deleted]]
>
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
--
Gregory (Greg) L. Snow Ph.D.
538280 at gmail.com