Dear list, i'm a new R user, so I apologize if the topic is already being addressed by some other user. I'm trying to determine if the reproductive success of a species of bird is related to a list of covariates. These are the covariates: ? elev: elevation of nest (meters) ? seadist: distance from the sea (meters) ? meanterranova: records of temperature ? minpengS1: records of temperature ? wchillpengS1: records of temperature ? minpengS2: records of temperature ? wchillpengS2: records of temperature ? nnd: nearest neighbour distance ? npd: nearest penguin distance ? eggs: numbers of eggs ? lay: laying date (julian calendar) ? hatch: hatching date (julian calendar) I have some NAs in the data. I want to test the model with all the variable then i want to remove some, but the ideal model: GLM.1 <-lmer(fledgesucc ~ +lay +hatch +elev +seadist +nnd +npd +meanterranova +minpengS1 +minpengS2 +wchillpengS1 +wchillpengS2 +(1|territory), family=binomial(logit), data=fledge) doesn't work because of these errors: 'Warning message: In mer_finalize(ans) : gr cannot be computed at initial par (65)'. "matrix is not symmetric [1,2]" If i delete one or more of the T records (i.e. minpengS2 +wchillpengS2) the model works...below and example: GLM.16 <-lmer(fledgesucc ~ lay +hatch +elev +seadist +nnd +npd +meanterranova +minpengS1 +(1|territory), family=binomial(logit), data=fledge) > summary(GLM.16) Generalized linear mixed model fit by the Laplace approximation Formula: fledgesucc ~ lay + hatch + elev + seadist + nnd + npd + meanterranova + minpengS1 + (1 | territory) Data: fledge AIC BIC logLik deviance 174 204.2 -77 154 Random effects: Groups Name Variance Std.Dev. territory (Intercept) 0.54308 0.73694 Number of obs: 152, groups: territory, 96 Fixed effects: Estimate Std. Error z value Pr(>|z|) (Intercept) 14.136846 14.510089 0.974 0.330 lay -0.007642 0.267913 -0.028 0.977 hatch -0.025947 0.267318 -0.097 0.923 elev 0.007481 0.027765 0.270 0.788 seadist -0.004277 0.004550 -0.940 0.347 nnd -0.035535 0.026504 -1.341 0.180 npd 0.003788 0.005521 0.686 0.493 meanterranova 1.242570 1.426158 0.871 0.384 minpengS1 -0.399852 0.418722 -0.955 0.340 Correlation of Fixed Effects: (Intr) lay hatch elev seadst nnd npd mntrrn lay 0.411 hatch -0.515 -0.993 elev -0.015 0.141 -0.135 seadist -0.003 -0.023 0.019 -0.440 nnd -0.061 0.066 -0.059 -0.020 0.231 npd 0.033 -0.108 0.100 0.298 -0.498 -0.338 meanterranv 0.459 -0.118 0.075 -0.061 0.014 -0.048 0.130 minpengS1 -0.540 0.015 0.035 0.032 0.000 0.039 -0.086 -0.970 I've attached an example of my dataset only 15 rows just to see the dataset. Let me know if you need more informations. Thanks in advance for your help and advices! regards -- Alessio Franceschi Phd student Dipartimento di Scienze Ambientali "G. Sarfatti" Universit? di Siena Via P.A. Mattioli, 8 - 53100 Siena (Italy) Cell. +393384431806 email: franceschi6 at unisi.it; alfranceschi at alice.it -------------- next part -------------- An embedded and charset-unspecified text was scrubbed... Name: dataset.txt URL: <https://stat.ethz.ch/pipermail/r-help/attachments/20111121/ce70a3a4/attachment.txt>
Dear Alessio, A few remarks. - R-sig-mixed models is a better list for this kind of questions - use the glmer() function if you want logistic or poisson regression - the error you are getting is an indication that the model is too complex for the data - watch for colinearity in the covariates Best regards, Thierry> -----Oorspronkelijk bericht----- > Van: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org] > Namens Alessio Unisi > Verzonden: maandag 21 november 2011 18:20 > Aan: r-help at r-project.org > Onderwerp: [R] errors with lme4 > Urgentie: Hoog > > Dear list, > i'm a new R user, so I apologize if the topic is already being addressed by some > other user. > > I'm trying to determine if the reproductive success of a species of bird is related > to a list of covariates. > > These are the covariates: > ? elev: elevation of nest (meters) > ? seadist: distance from the sea (meters) > ? meanterranova: records of temperature > ? minpengS1: records of temperature > ? wchillpengS1: records of temperature > ? minpengS2: records of temperature > ? wchillpengS2: records of temperature > ? nnd: nearest neighbour distance > ? npd: nearest penguin distance > ? eggs: numbers of eggs > ? lay: laying date (julian calendar) > ? hatch: hatching date (julian calendar) > I have some NAs in the data. > > I want to test the model with all the variable then i want to remove some, but > the ideal model: > GLM.1 <-lmer(fledgesucc ~ +lay +hatch +elev +seadist +nnd +npd > +meanterranova +minpengS1 +minpengS2 +wchillpengS1 +wchillpengS2 > +(1|territory), family=binomial(logit), data=fledge) > > doesn't work because of these errors: > 'Warning message: In mer_finalize(ans) : gr cannot be computed at initial par > (65)'. > "matrix is not symmetric [1,2]" > > If i delete one or more of the T records (i.e. minpengS2 +wchillpengS2) the > model works...below and example: > > GLM.16 <-lmer(fledgesucc ~ lay +hatch +elev +seadist +nnd +npd > +meanterranova +minpengS1 +(1|territory), family=binomial(logit), > data=fledge) > > > summary(GLM.16) > Generalized linear mixed model fit by the Laplace approximation > Formula: fledgesucc ~ lay + hatch + elev + seadist + nnd + npd + > meanterranova + minpengS1 + (1 | territory) > Data: fledge > AIC BIC logLik deviance > 174 204.2 -77 154 > Random effects: > Groups Name Variance Std.Dev. > territory (Intercept) 0.54308 0.73694 > Number of obs: 152, groups: territory, 96 > > Fixed effects: > Estimate Std. Error z value Pr(>|z|) > (Intercept) 14.136846 14.510089 0.974 0.330 > lay -0.007642 0.267913 -0.028 0.977 > hatch -0.025947 0.267318 -0.097 0.923 > elev 0.007481 0.027765 0.270 0.788 > seadist -0.004277 0.004550 -0.940 0.347 > nnd -0.035535 0.026504 -1.341 0.180 > npd 0.003788 0.005521 0.686 0.493 > meanterranova 1.242570 1.426158 0.871 0.384 > minpengS1 -0.399852 0.418722 -0.955 0.340 > > Correlation of Fixed Effects: > (Intr) lay hatch elev seadst nnd npd mntrrn > lay 0.411 > hatch -0.515 -0.993 > elev -0.015 0.141 -0.135 > seadist -0.003 -0.023 0.019 -0.440 > nnd -0.061 0.066 -0.059 -0.020 0.231 > npd 0.033 -0.108 0.100 0.298 -0.498 -0.338 > meanterranv 0.459 -0.118 0.075 -0.061 0.014 -0.048 0.130 > minpengS1 -0.540 0.015 0.035 0.032 0.000 0.039 -0.086 -0.970 > > > I've attached an example of my dataset only 15 rows just to see the > dataset. Let me know if you need more informations. > > Thanks in advance for your help and advices! > regards > > -- > Alessio Franceschi > Phd student > Dipartimento di Scienze Ambientali "G. Sarfatti" > Universit? di Siena > Via P.A. Mattioli, 8 - 53100 Siena (Italy) > Cell. +393384431806 > email: franceschi6 at unisi.it; alfranceschi at alice.it
Dear R-users, i need help for this topic! I'm trying to determine if the reproductive success (0=fail, 1=success) of a species of bird is related to a list of covariates. These are the covariates: ? elev: elevation of nest (meters) ? seadist: distance from the sea (meters) ? meanterranova: records of temperature ? minpengS1: records of temperature ? wchillpengS1: records of temperature ? minpengS2: records of temperature ? wchillpengS2: records of temperature ? nnd: nearest neighbour distance ? npd: nearest penguin distance ? eggs: numbers of eggs ? lay: laying date (julian calendar) ? hatch: hatching date (julian calendar) I have some NAs in the data. I want to test the model with all the variable then i want to remove some, but the ideal model: GLM.1 <-lmer(fledgesucc ~ +lay +hatch +elev +seadist +nnd +npd +meanterranova +minpengS1 +minpengS2 +wchillpengS1 +wchillpengS2 +(1|territory), family=binomial(logit), data=fledge) doesn't work because of these errors: 'Warning message: In mer_finalize(ans) : gr cannot be computed at initial par (65)'. "matrix is not symmetric [1,2]" If i delete one or more of the T records (i.e. minpengS2 +wchillpengS2) the model works...below and example: GLM.16 <-lmer(fledgesucc ~ lay +hatch +elev +seadist +nnd +npd +meanterranova +minpengS1 +(1|territory), family=binomial(logit), data=fledge) > summary(GLM.16) Generalized linear mixed model fit by the Laplace approximation Formula: fledgesucc ~ lay + hatch + elev + seadist + nnd + npd + meanterranova + minpengS1 + (1 | territory) Data: fledge AIC BIC logLik deviance 174 204.2 -77 154 Random effects: Groups Name Variance Std.Dev. territory (Intercept) 0.54308 0.73694 Number of obs: 152, groups: territory, 96 Fixed effects: Estimate Std. Error z value Pr(>|z|) (Intercept) 14.136846 14.510089 0.974 0.330 lay -0.007642 0.267913 -0.028 0.977 hatch -0.025947 0.267318 -0.097 0.923 elev 0.007481 0.027765 0.270 0.788 seadist -0.004277 0.004550 -0.940 0.347 nnd -0.035535 0.026504 -1.341 0.180 npd 0.003788 0.005521 0.686 0.493 meanterranova 1.242570 1.426158 0.871 0.384 minpengS1 -0.399852 0.418722 -0.955 0.340 Correlation of Fixed Effects: (Intr) lay hatch elev seadst nnd npd mntrrn lay 0.411 hatch -0.515 -0.993 elev -0.015 0.141 -0.135 seadist -0.003 -0.023 0.019 -0.440 nnd -0.061 0.066 -0.059 -0.020 0.231 npd 0.033 -0.108 0.100 0.298 -0.498 -0.338 meanterranv 0.459 -0.118 0.075 -0.061 0.014 -0.048 0.130 minpengS1 -0.540 0.015 0.035 0.032 0.000 0.039 -0.086 -0.970 I try also with glmer() but the error are the same. I've attached an example of my dataset only 15 rows just to see the dataset. Let me know if you need more informations. I'm a new R user, so I apologize if the topic is already being addressed by some other user. Thanks in advance for your help and advices! regards -- Alessio Franceschi Phd student Dipartimento di Scienze Ambientali "G. Sarfatti" Universit? di Siena Via P.A. Mattioli, 8 - 53100 Siena (Italy) Cell. +393384431806 email: franceschi6 at unisi.it; alfranceschi at alice.it -------------- next part -------------- An embedded and charset-unspecified text was scrubbed... Name: dataset.txt URL: <https://stat.ethz.ch/pipermail/r-help/attachments/20111124/17759afe/attachment.txt>