I would appreciate pointers on what I should read to understand this output: summary(lm(TDS ~ Cond + Ca + Cl + Mg + Na + SO4)) Call: lm(formula = TDS ~ Cond + Ca + Cl + Mg + Na + SO4) Residuals: ALL 1 residuals are 0: no residual degrees of freedom! Coefficients: (6 not defined because of singularities) Estimate Std. Error t value Pr(>|t|) (Intercept) 125 NA NA NA Cond NA NA NA NA Ca NA NA NA NA Cl NA NA NA NA Mg NA NA NA NA Na NA NA NA NA SO4 NA NA NA NA Residual standard error: NaN on 0 degrees of freedom (63 observations deleted due to missingness) When I look at the summary for the data frame used for this model I do not see an excessive number of missing values or indications why there are no residual degrees of freedom. The same model applied to 8 other data frames did not produce similar results. Puzzled, Rich
Please see ?dput use dput(your data) and paste the output into a reply, thanks. This way we know what you are working with. Rich Shepard wrote:> > I would appreciate pointers on what I should read to understand this > output: > > summary(lm(TDS ~ Cond + Ca + Cl + Mg + Na + SO4)) > > Call: > lm(formula = TDS ~ Cond + Ca + Cl + Mg + Na + SO4) > > Residuals: > ALL 1 residuals are 0: no residual degrees of freedom! > > Coefficients: (6 not defined because of singularities) > Estimate Std. Error t value Pr(>|t|) > (Intercept) 125 NA NA NA > Cond NA NA NA NA > Ca NA NA NA NA > Cl NA NA NA NA > Mg NA NA NA NA > Na NA NA NA NA > SO4 NA NA NA NA > > Residual standard error: NaN on 0 degrees of freedom > (63 observations deleted due to missingness) > > When I look at the summary for the data frame used for this model I do > not > see an excessive number of missing values or indications why there are no > residual degrees of freedom. The same model applied to 8 other data frames > did not produce similar results. > > Puzzled, > > Rich > > ______________________________________________ > R-help@ mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >-- View this message in context: http://r.789695.n4.nabble.com/Interpreting-Multiple-Linear-Regression-Summary-tp4020516p4020567.html Sent from the R help mailing list archive at Nabble.com.
> -----Original Message----- > From: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org] > On Behalf Of Rich Shepard > Sent: Wednesday, November 09, 2011 9:05 AM > To: r-help at r-project.org > Subject: [R] Interpreting Multiple Linear Regression Summary > > I would appreciate pointers on what I should read to understand this > output: > > summary(lm(TDS ~ Cond + Ca + Cl + Mg + Na + SO4)) > > Call: > lm(formula = TDS ~ Cond + Ca + Cl + Mg + Na + SO4) > > Residuals: > ALL 1 residuals are 0: no residual degrees of freedom! > > Coefficients: (6 not defined because of singularities) > Estimate Std. Error t value Pr(>|t|) > (Intercept) 125 NA NA NA > Cond NA NA NA NA > Ca NA NA NA NA > Cl NA NA NA NA > Mg NA NA NA NA > Na NA NA NA NA > SO4 NA NA NA NA > > Residual standard error: NaN on 0 degrees of freedom > (63 observations deleted due to missingness) > > When I look at the summary for the data frame used for this model I do > not > see an excessive number of missing values or indications why there are no > residual degrees of freedom. The same model applied to 8 other data frames > did not produce similar results. > > Puzzled, > > Rich >Rich, I don't see a 'data=' parameter in your call to lm(). How does lm() know where to find the variables referenced in the model parameter? If that is not the problem, then we need to see str() output for the data frame that you are analyzing. Dan Daniel Nordlund Bothell, WA USA
On Nov 9, 2011, at 12:04 PM, Rich Shepard wrote:> I would appreciate pointers on what I should read to understand this > output: > > summary(lm(TDS ~ Cond + Ca + Cl + Mg + Na + SO4))I don't see a data= argument specified, so you are telling lm() that your workspace has individual vectors by those names in the formula. That is not what is implied by hte rest of your message.> > Call: > lm(formula = TDS ~ Cond + Ca + Cl + Mg + Na + SO4) > > Residuals: > ALL 1 residuals are 0: no residual degrees of freedom! > > Coefficients: (6 not defined because of singularities) > Estimate Std. Error t value Pr(>|t|) > (Intercept) 125 NA NA NA > Cond NA NA NA NA > Ca NA NA NA NA > Cl NA NA NA NA > Mg NA NA NA NA > Na NA NA NA NA > SO4 NA NA NA NA > > Residual standard error: NaN on 0 degrees of freedom > (63 observations deleted due to missingness) > > When I look at the summary for the data frame used for this model I > do not > see an excessive number of missing values or indications why there > are no > residual degrees of freedom. The same model applied to 8 other data > frames > did not produce similar results. > > Puzzled, > > Rich > > ______________________________________________ > R-help at r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code.David Winsemius, MD West Hartford, CT
This is the output of dput(your data) structure(list(Ca = c(NA, NA, 24.4, NA, 21.4, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 28, 32, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 34.7, NA, 42.5, NA, 26, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.6, 21.4, NA, 48.3, 63.5, NA, NA, 28.7, NA, NA, NA, NA, 64.3, 23), Cl = c(1.58, 5.6, 3, NA, 1, 5, 1.2, 4, 4, 8.4, 1, 1.4, 4.9, 1.7, 2, 1.6, 3.3, 2.2, 9, 1, 2, 1, 1, 5, 4, 3, 2.27, 1.76, 5.81, 4.23, 4.23, 6.25, 6.72, 4, NA, 5, 5.8, 5.8, 2.2, 5.4, 5.4, 4.8, 8, 1, 4.8, 5.9, 5.9, 13, 5.6, 1.2, NA, NA, NA, 3, 7, NA, NA, 2, NA, NA, NA, NA, 7, 4.1), Cond = c(NA, NA, 190, 187, 184, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 248, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 304, 354, 379, NA, 300, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 2.2, 187, 285, 378, 533, 207, 262, 244, 238, 280, 380, 402, 636, 300), Mg = c(NA, NA, 10, NA, 9.1, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 11, 12, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 17.4, NA, 21.1, NA, 24, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 9.5, NA, 22.1, 29.9, NA, NA, 12.6, NA, NA, NA, NA, 32.4, 21), Na = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 4L, 4L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), SO4 = c(9.4, 6.5, 9, NA, 7, 55, 6.8, 105, 15.6, 8.4, 8.8, 19.4, 37, 12, 10, 9.1, 34, 11, 69, 18, 9, 13, 9, 7, 6, 5, 7.8, 7.8, 7.5, 6, 7.3, 7, 7.5, 6, 7, 7, 5.6, 5.6, 5.4, 11, 10.5, 9.9, 11.7, 8.4, 12.1, 16, 20, 7.6, 17, 6.5, NA, 8, 22, 24, 44, NA, 13, 13, 12, 18, 23, 23, 73, 4), TDS = c(105L, 181L, 112L, 144L, 114L, 308L, 96L, 430L, 108L, 108L, 125L, 129L, 360L, 140L, 95L, 120L, 280L, 130L, 352L, 148L, 107L, 125L, 139L, 188L, 201L, 178L, 197L, 187L, 182L, 165L, 186L, 191L, 190L, 176L, 175L, 220L, 163L, 163L, 152L, 221L, 171L, 204L, 174L, 190L, 174L, 210L, 190L, 180L, 200L, 180L, NA, 120L, 135L, 228L, 14L, NA, 156L, 140L, 128L, 160L, 215L, 230L, 316L, 163L)), .Names = c("Ca", "Cl", "Cond", "Mg", "Na", "SO4", "TDS"), class = "data.frame", row.names c(NA, -64L)) B77S wrote:> > Please see ?dput > > use dput(your data) and paste the output into a reply, thanks. > > This way we know what you are working with. > > > > > Rich Shepard wrote: >> >> I would appreciate pointers on what I should read to understand this >> output: >> >> summary(lm(TDS ~ Cond + Ca + Cl + Mg + Na + SO4)) >> >> Call: >> lm(formula = TDS ~ Cond + Ca + Cl + Mg + Na + SO4) >> >> Residuals: >> ALL 1 residuals are 0: no residual degrees of freedom! >> >> Coefficients: (6 not defined because of singularities) >> Estimate Std. Error t value Pr(>|t|) >> (Intercept) 125 NA NA NA >> Cond NA NA NA NA >> Ca NA NA NA NA >> Cl NA NA NA NA >> Mg NA NA NA NA >> Na NA NA NA NA >> SO4 NA NA NA NA >> >> Residual standard error: NaN on 0 degrees of freedom >> (63 observations deleted due to missingness) >> >> When I look at the summary for the data frame used for this model I do >> not >> see an excessive number of missing values or indications why there are no >> residual degrees of freedom. The same model applied to 8 other data >> frames >> did not produce similar results. >> >> Puzzled, >> >> Rich >> >> ______________________________________________ >> R-help@ mailing list >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide >> http://www.R-project.org/posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. >> >-- View this message in context: http://r.789695.n4.nabble.com/Interpreting-Multiple-Linear-Regression-Summary-tp4020516p4021355.html Sent from the R help mailing list archive at Nabble.com.