On Feb 19, 2011, at 10:35 AM, garciap wrote:
>
> Hi to all the people (again),
>
> I'm doing some simulations with the memisc package of an own
> function, but
> I've the problem that I didn't know how to read the result of such
> simulations. My function is:
>
>> Torre<-function(a1,N1,a2,N2)
> + {Etorre<-(a1*N1)/(1+a1*N1)
> + Efuera<-(a2*N2)/(1+a2*N2)
> + if(Etorre>Efuera)Subir=TRUE
> + if (Etorre<Efuera)Subir=FALSE
> + result<-list(Subir)
> + return(result)
> + }
>
>> Torre<-
>> Simulate
>> (Torre
>> (a1
>> ,N1
>> ,a2
>> ,N2
>> ),expand
>> .grid
>> (a1
>> =
>> 3
>> ,N1
>> =
>> 0.5
>> ,a2
>> =
>> c
>> (0.01,0.02,0.05,0.1
>> ),N2=0.1),nsim=1000,seed=10000,trace=50,keep.data=TRUE)
>
?Simulate
Try something like this, since I thought your example was far from
"minimal". After reading that the value was a dataframe, I just used
standard indexing to access individual rows. I used instead the first
example from the help page:
require(memisc)
Normal.example <- function(mean=0,sd=1,n=10){
x <- rnorm(n=n,mean=mean,sd=sd)
c( Mean=mean(x), Median=median(x), Var=var(x) ) }
Normal.simres <- Simulate(
Normal.example(mean,sd,n),
expand.grid( mean=0, sd=c(1,10), n=c(10,100) ), nsim=200, trace=50)
> Normal.simres[1, ]
mean sd n Mean Median Var
1 0 1 10 0.01784074 -0.3662563 1.381853
> Normal.simres[200, ]
mean sd n Mean Median Var
200 0 1 10 0.4004172 0.3280587 1.207104
That object does pose some surprises:
> str(Normal.simres[, 1]) # regular extraction doesn't return what I
expect
'data.frame': 800 obs. of 6 variables:
$ mean : num 0 0 0 0 0 0 0 0 0 0 ...
$ sd : num 1 1 1 1 1 1 1 1 1 1 ...
$ n : num 10 10 10 10 10 10 10 10 10 10 ...
$ Mean : num 0.0178 -0.0803 0.4951 0.2081 -0.3496 ...
$ Median: num -0.36626 -0.29166 0.27018 -0.00887 -0.5638 ...
$ Var : num 1.382 0.798 1.18 0.48 0.571 ...
> is.data.frame(Normal.simres)
[1] FALSE
> is.data.frame(Normal.simres[1])
[1] TRUE
> str(Normal.simres[, 1][2])
'data.frame': 800 obs. of 1 variable:
$ sd: num 1 1 1 1 1 1 1 1 1 1 ...
> str(Normal.simres[, 1]["Mean"]) # but it is possible to extract
the "good stuff"
'data.frame': 800 obs. of 1 variable:
$ Mean: num 0.0178 -0.0803 0.4951 0.2081 -0.3496 ...
So it appears to be something not quite a dataframe.
> quantile(Normal.simres[]$Mean , c(.25,.5,.75)) # works
25% 50% 75%
-0.22652591 0.02842814 0.42513166
> str(Normal.simres$Mean ) # doesn't work
NULL
> ---------------------------------------------------
> a1 N1 a2 N2
> 1 3 0.5 0.01 0.1
> Replication 50
> Replication 100
> Replication 150
> Replication 200
> Replication 250
> Replication 300
> Replication 350
> Replication 400
> Replication 450
> Replication 500
> Replication 550
> Replication 600
> Replication 650
> Replication 700
> Replication 750
> Replication 800
> Replication 850
> Replication 900
> Replication 950
> Replication 1000
>
> ---------------------------------------------------
> a1 N1 a2 N2
> 2 3 0.5 0.02 0.1
> Replication 50
> Replication 100
> Replication 150
> Replication 200
> Replication 250
> Replication 300
> Replication 350
> Replication 400
> Replication 450
> Replication 500
> Replication 550
> Replication 600
> Replication 650
> Replication 700
> Replication 750
> Replication 800
> Replication 850
> Replication 900
> Replication 950
> Replication 1000
>
> ---------------------------------------------------
> a1 N1 a2 N2
> 3 3 0.5 0.05 0.1
> Replication 50
> Replication 100
> Replication 150
> Replication 200
> Replication 250
> Replication 300
> Replication 350
> Replication 400
> Replication 450
> Replication 500
> Replication 550
> Replication 600
> Replication 650
> Replication 700
> Replication 750
> Replication 800
> Replication 850
> Replication 900
> Replication 950
> Replication 1000
>
> ---------------------------------------------------
> a1 N1 a2 N2
> 4 3 0.5 0.1 0.1
> Replication 50
> Replication 100
> Replication 150
> Replication 200
> Replication 250
> Replication 300
> Replication 350
> Replication 400
> Replication 450
> Replication 500
> Replication 550
> Replication 600
> Replication 650
> Replication 700
> Replication 750
> Replication 800
> Replication 850
> Replication 900
> Replication 950
> Replication 1000
>> print(Torre)
> A 'default_bucket' object with 5 variables and 4000 observations
>
> When I try print the results I obtain this, but how can I read it?
> It will
> seem stupid to people, but I can't! even though function
> summary(Torre):
>
>> summary(Torre)
> Error in object[[i]] : wrong arguments for subsetting an environment
>>
>
>
> Best regards (again) and many thanks for your help
>
> Pablo
> --
> View this message in context:
http://r.789695.n4.nabble.com/reading-simulations-tp3314281p3314281.html
> Sent from the R help mailing list archive at Nabble.com.
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
David Winsemius, MD
West Hartford, CT