Hi,
I did it with
Iris <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]), Sp =
rep(c("s","c","v"), rep(50,3)))
train <- sample(1:150, 75) table(Iris$Sp[train])
z <- lda(Sp ~ ., Iris, prior = c(1,1,1)/3, subset = train)
Then I did plot(z,xlim=c(-10,10),ylim=c(-10,10)) before drawing
points(predict(z)$x,
col=palette()[predict(z)$class],xlim=c(-10,10),ylim=c(-10,10)) and all
the points are superimposed. The only difference I found was the
different x- and y-axis when I drew them separately, i.e.
plot(z)
plot(predict(z)$x, col=palette()[predict(z)$class])
Alain
Alejo C.S. wrote:> I'm confused on how is the right way to plot a discriminant analysis
made by
> lda function (MASS package).
> (I had attached my data fro reproduction). When I plot a lda object :
>
> X <- read.table("data", header=T)
>
> lda_analysis <- lda(formula(X), data=X)
>
> plot(lda_analysis)
>
> #the above plot is completely different to:
>
> plot(predict(lda_analysis)$x, col=palette()[predict(lda_analysis)$class])
>
> that should be the same graph than the first?
>
> In the second case, I use predict function to obtain the LD1 and LD2
> coordinates of lda_analysis (predict(lda_analysis)$x) and it's
respective
> class (predict(lda_analysis)$class), but it seems that the classes are
> different:
>
> table(X$G3, predict(lda_analysis)$class)
>
> B G M
> B 29 0 3
> G 0 26 2
> M 4 0 46
>
>
> any clues?
> Regards,
>
> ------------------------------------------------------------------------
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
--
Alain Guillet
Statistician and Computer Scientist
SMCS - Institut de statistique - Universit? catholique de Louvain
Bureau c.316
Voie du Roman Pays, 20
B-1348 Louvain-la-Neuve
Belgium
tel: +32 10 47 30 50