Christoph Scherber
2009-May-05 09:47 UTC
[R] stepAICc function (based on MASS:::stepAIC.default)
Dear all, I have tried to modify the code of MASS:::stepAIC.default(), dropterm() and addterm() to use AICc instead of AIC for model selection. The code is appended below. Somehow the calculations are still not correct and I would be grateful if anyone could have a look at what might be wrong with this code... Here is a working example: ## require(nlme) model1=lme(distance ~ age + Sex, data = Orthodont, random =~1) stepAICc.Christoph(model1) ## this gives the correct initial AICc value, but wrong values inside the stepAICc (and probably dropterm.AICc) function. All three functions are appended below. Many thanks and best wishes, Christoph ## stepAICc.Christoph=function (object, scope, scale = 0, direction = c("both", "backward", "forward"), trace = 1, keep = NULL, steps = 1000, use.start = FALSE, k = 2, ...) { mydeviance <- function(x, ...) { dev <- deviance(x) if (!is.null(dev)) dev else extractAIC(x, k = 0)[2L] } cut.string <- function(string) { if (length(string) > 1L) string[-1L] <- paste("\n", string[-1L], sep = "") string } re.arrange <- function(keep) { namr <- names(k1 <- keep[[1L]]) namc <- names(keep) nc <- length(keep) nr <- length(k1) array(unlist(keep, recursive = FALSE), c(nr, nc), list(namr, namc)) } step.results <- function(models, fit, object, usingCp = FALSE) { change <- sapply(models, "[[", "change") rd <- sapply(models, "[[", "deviance") dd <- c(NA, abs(diff(rd))) rdf <- sapply(models, "[[", "df.resid") ddf <- c(NA, abs(diff(rdf))) AICc <- sapply(models, "[[", "AICc") heading <- c("Stepwise Model Path \nAnalysis of Deviance Table", "\nInitial Model:", deparse(as.vector(formula(object))), "\nFinal Model:", deparse(as.vector(formula(fit))), "\n") aod <- if (usingCp) data.frame(Step = change, Df = ddf, Deviance = dd, `Resid. Df` = rdf, `Resid. Dev` = rd, Cp = AICc, check.names = FALSE) else data.frame(Step = change, Df = ddf, Deviance = dd, `Resid. Df` = rdf, `Resid. Dev` = rd, AICc = AICc, check.names = FALSE) attr(aod, "heading") <- heading class(aod) <- c("Anova", "data.frame") fit$anova <- aod fit } Terms <- terms(object) object$formula <- Terms if (inherits(object, "lme")) object$call$fixed <- Terms else if (inherits(object, "gls")) object$call$model <- Terms else object$call$formula <- Terms if (use.start) warning("'use.start' cannot be used with R's version of glm") md <- missing(direction) direction <- match.arg(direction) backward <- direction == "both" | direction == "backward" forward <- direction == "both" | direction == "forward" if (missing(scope)) { fdrop <- numeric(0) fadd <- attr(Terms, "factors") if (md) forward <- FALSE } else { if (is.list(scope)) { fdrop <- if (!is.null(fdrop <- scope$lower)) attr(terms(update.formula(object, fdrop)), "factors") else numeric(0) fadd <- if (!is.null(fadd <- scope$upper)) attr(terms(update.formula(object, fadd)), "factors") } else { fadd <- if (!is.null(fadd <- scope)) attr(terms(update.formula(object, scope)), "factors") fdrop <- numeric(0) } } models <- vector("list", steps) if (!is.null(keep)) keep.list <- vector("list", steps) if (is.list(object) && (nmm <- match("nobs", names(object), 0)) > 0) n <- object[[nmm]] else n <- length(residuals(object)) fit <- object bAIC<- extractAIC(fit, scale, k = k, ...) edf <- bAIC[1L] #extracts the number of parameters, k=edf bAIC <- bAIC[2L]+((2*edf*(edf+1))/(n-edf-1)) if (is.na(bAIC)) stop("AICc is not defined for this model, so stepAIC cannot proceed") nm <- 1 Terms <- terms(fit) if (trace) { cat("Start: AICc=", format(round(bAIC, 2)), "\n", cut.string(deparse(as.vector(formula(fit)))), "\n\n", sep = "") utils::flush.console() } models[[nm]] <- list(deviance = mydeviance(fit), df.resid = n - edf, change = "", AICc = bAIC) if (!is.null(keep)) keep.list[[nm]] <- keep(fit, bAIC) usingCp <- FALSE while (steps > 0) { steps <- steps - 1 AICc <- bAIC ffac <- attr(Terms, "factors") if (!is.null(sp <- attr(Terms, "specials")) && !is.null(st <- sp$strata)) ffac <- ffac[-st, ] scope <- factor.scope(ffac, list(add = fadd, drop = fdrop)) aod <- NULL change <- NULL if (backward && length(scope$drop)) { aod <- dropterm.AICc(fit, scope$drop, scale = scale, trace = max(0, trace - 1), k = k, ...) rn <- row.names(aod) row.names(aod) <- c(rn[1L], paste("-", rn[-1L], sep = " ")) if (any(aod$Df == 0, na.rm = TRUE)) { zdf <- aod$Df == 0 & !is.na(aod$Df) nc <- match(c("Cp", "AICc"), names(aod)) nc <- nc[!is.na(nc)][1L] ch <- abs(aod[zdf, nc] - aod[1, nc]) > 0.01 if (any(ch)) { warning("0 df terms are changing AICc") zdf <- zdf[!ch] } if (length(zdf) > 0L) change <- rev(rownames(aod)[zdf])[1L] } } if (is.null(change)) { if (forward && length(scope$add)) { aodf <- addterm.AICc(fit, scope$add, scale = scale, trace = max(0, trace - 1), k = k, ...) rn <- row.names(aodf) row.names(aodf) <- c(rn[1L], paste("+", rn[-1L], sep = " ")) aod <- if (is.null(aod)) aodf else rbind(aod, aodf[-1, , drop = FALSE]) } attr(aod, "heading") <- NULL if (is.null(aod) || ncol(aod) == 0) break nzdf <- if (!is.null(aod$Df)) aod$Df != 0 | is.na(aod$Df) aod <- aod[nzdf, ] if (is.null(aod) || ncol(aod) == 0) break nc <- match(c("Cp", "AICc"), names(aod)) nc <- nc[!is.na(nc)][1L] o <- order(aod[, nc]) if (trace) { print(aod[o, ]) utils::flush.console() } if (o[1L] == 1) break change <- rownames(aod)[o[1L]] } usingCp <- match("Cp", names(aod), 0) > 0 fit <- update(fit, paste("~ .", change), evaluate = FALSE) fit <- eval.parent(fit) if (is.list(fit) && (nmm <- match("nobs", names(fit), 0)) > 0) nnew <- fit[[nmm]] else nnew <- length(residuals(fit)) if (nnew != n) stop("number of rows in use has changed: remove missing values?") Terms <- terms(fit) bAIC <- extractAIC(fit, scale, k = k, ...) edf <- bAIC[1L] bAIC <- bAIC[2L]+((2*edf*(edf+1))/(nnew-edf-1)) if (trace) { cat("\nStep: AICc=", format(round(bAIC, 2)), "\n", cut.string(deparse(as.vector(formula(fit)))), "\n\n", sep = "") utils::flush.console() } if (bAIC >= AICc + 1e-07) break nm <- nm + 1 models[[nm]] <- list(deviance = mydeviance(fit), df.resid = n - edf, change = change, AICc = bAIC) if (!is.null(keep)) keep.list[[nm]] <- keep(fit, bAIC) } if (!is.null(keep)) fit$keep <- re.arrange(keep.list[seq(nm)]) step.results(models = models[seq(nm)], fit, object, usingCp) } ## dropterm.AICc=function (object, scope, scale = 0, test = c("none", "Chisq"), k = 2, sorted = FALSE, trace = FALSE, ...) { tl <- attr(terms(object), "term.labels") if (missing(scope)) scope <- drop.scope(object) else { if (!is.character(scope)) scope <- attr(terms(update.formula(object, scope)), "term.labels") if (!all(match(scope, tl, 0L))) stop("scope is not a subset of term labels") } ns <- length(scope) ans <- matrix(nrow = ns + 1L, ncol = 2L, dimnames = list(c("<none>", scope), c("df", "AICc"))) n=length(object$residuals) edf=extractAIC(object, scale, k = k, ...)[1L] ans[1, ] <- rbind( edf, extractAIC(object, scale, k = k, ...)[2L]+((2*edf*(edf+1))/(n-edf-1)) #calculate AICc ) env <- environment(formula(object)) n0 <- length(object$residuals) for (i in seq(ns)) { tt <- scope[i] if (trace) { message("trying -", tt) utils::flush.console() } nfit <- update(object, as.formula(paste("~ . -", tt)), evaluate = FALSE) nfit <- eval(nfit, envir = env) n=length(nfit$residuals) edf=extractAIC(nfit, scale, k = k, ...)[1L] ans[i+1, ] <- rbind( edf, extractAIC(nfit, scale, k = k, ...)[2L]+((2*edf*(edf+1))/(n-edf-1)) #calculate AICc ) if (length(nfit$residuals) != n0) stop("number of rows in use has changed: remove missing values?") } dfs <- ans[1L, 1L] - ans[, 1L] dfs[1L] <- NA aod <- data.frame(Df = dfs, AICc = ans[,2]) o <- if (sorted) order(aod$AICc) else seq_along(aod$AICc) test <- match.arg(test) if (test == "Chisq") { dev <- ans[, 2L] - k * ans[, 1L] dev <- dev - dev[1L] dev[1L] <- NA nas <- !is.na(dev) P <- dev P[nas] <- safe_pchisq(dev[nas], dfs[nas], lower.tail = FALSE) aod[, c("LRT", "Pr(Chi)")] <- list(dev, P) } aod <- aod[o, ] head <- c("Single term deletions", "\nModel:", deparse(as.vector(formula(object)))) if (scale > 0) head <- c(head, paste("\nscale: ", format(scale), "\n")) class(aod) <- c("anova", "data.frame") attr(aod, "heading") <- head aod } ## addterm.AICc=function (object, scope, scale = 0, test = c("none", "Chisq"), k = 2, sorted = FALSE, trace = FALSE, ...) { if (missing(scope) || is.null(scope)) stop("no terms in scope") if (!is.character(scope)) scope <- add.scope(object, update.formula(object, scope)) if (!length(scope)) stop("no terms in scope for adding to object") ns <- length(scope) ans <- matrix(nrow = ns + 1L, ncol = 2L, dimnames = list(c("<none>", scope), c("df", "AICc"))) n=length(residuals(object)) edf=extractAICc(object, scale, k = k, ...)[1L] ans[1, ] <- rbind( edf, extractAICc(object, scale, k = k, ...)[2L]+((2*edf*(edf+1))/(n-edf-1)) #calculate AICc ) n0 <- length(object$residuals) env <- environment(formula(object)) for (i in seq(ns)) { tt <- scope[i] if (trace) { message("trying +", tt) utils::flush.console() } nfit <- update(object, as.formula(paste("~ . +", tt)), evaluate = FALSE) nfit <- eval(nfit, envir = env) edf=extractAICc(nfit, scale, k = k, ...)[1L] ans[i+1, ] <- rbind( edf, extractAICc(nfit, scale, k = k, ...)[2L]+((2*edf*(edf+1))/(n-edf-1)) #calculate AICc ) if (length(nfit$residuals) != n0) stop("number of rows in use has changed: remove missing values?") } dfs <- ans[, 1L] - ans[1L, 1L] dfs[1L] <- NA aod <- data.frame(Df = dfs, AICc = ans[,2]) o <- if (sorted) order(aod$AICc) else seq_along(aod$AICc) test <- match.arg(test) if (test == "Chisq") { dev <- ans[, 2L] - k * ans[, 1L] dev <- dev[1L] - dev dev[1L] <- NA nas <- !is.na(dev) P <- dev P[nas] <- safe_pchisq(dev[nas], dfs[nas], lower.tail = FALSE) aod[, c("LRT", "Pr(Chi)")] <- list(dev, P) } aod <- aod[o, ] head <- c("Single term additions", "\nModel:", deparse(as.vector(formula(object)))) if (scale > 0) head <- c(head, paste("\nscale: ", format(scale), "\n")) class(aod) <- c("anova", "data.frame") attr(aod, "heading") <- head aod }