Dear R-list, I would like to show the implications of estimating a linear trend to time series, which contain significant serial correlation. I want to demonstrate this, comparing lm() and an gls() fits, using the LakeHuron data set, available in R. Now in my particular case I would like to draw confidence bands on the plot and show that there are differences. Unfortunately, I do not know how to construct those bands for the gls fit object. Does anyone know how to do that? Here is the code: library(nlme) library(car) lm.hu <- lm(LakeHuron~time(LakeHuron)) ## use durbin-watson test to estimate the AR(p) model durbin.watson(lm.hu,max.lag=7) # I decided to use a AR(2) model gls.hu <- gls(LakeHuron ~ time(LakeHuron), correlation=corARMA(p=2), method="ML") plot(LakeHuron, main="Lake level time series (Lake Huron)") lines(as.numeric(time(LakeHuron)),predict(lm.hu,interval=c("conf"))[,1],lty=1,col=2) lines(as.numeric(time(LakeHuron)),predict(lm.hu,interval=c("conf"))[,2],lty=2,col=2) lines(as.numeric(time(LakeHuron)),predict(lm.hu,interval=c("conf"))[,3],lty=2,col=2) ## predict of the gls class does not contain confidence intervals lines(as.numeric(time(LakeHuron)),predict(gls.hu,interval=c("conf")),lty=1,col=4) Thank you, Maik -- Maik Renner Institut f?r Hydrologie und Meteorologie Technische Universit?t Dresden