Displaying 20 results from an estimated 27 matches for "ypred".
Did you mean:
pred
2018 May 22
2
Bootstrap and average median squared error
...uggest you use base package boot.
> You would need the data in a data.frame, see how you could do it.
>
>
> library(boot)
>
> bootMedianSE <- function(data, indices){
> ??? d <- data[indices, ]
> ??? fit <- rq(crp ~ bmi + glucose, tau = 0.5, data = d)
> ??? ypred <- predict(fit)
> ??? y <- d$crp
> ??? median(y - ypred)^2
> }
>
> dat <- data.frame(crp, bmi, glucose)
> nboot <- 100
>
> medse <- boot(dat, bootMedianSE, R = nboot)
>
> medse$t0
> mean(medse$t)??? # This is the value you want
>
>
> H...
2018 May 22
1
Bootstrap and average median squared error
Hello,
Right!
I copied from the OP's question without thinking about it.
Corrected would be
bootMedianSE <- function(data, indices){
d <- data[indices, ]
fit <- rq(crp ~ bmi + glucose, tau = 0.5, data = d)
ypred <- predict(fit)
y <- d$crp
median((y - ypred)^2)
}
Sorry,
rui Barradas
On 5/22/2018 11:32 AM, Daniel Nordlund wrote:
> On 5/22/2018 2:32 AM, Rui Barradas wrote:
>> bootMedianSE <- function(data, indices){
>> ????? d <- data[indices, ]
>> ????? fit <-...
2018 May 21
2
Bootstrap and average median squared error
...13,45,46,56,57,67,87,12,13)
glucose <-c(23,54,11,12,13,21,32,12,45,54,65,87,21,23,12,12,23,23,43,54)
# Create a list to store the results
lst<-list()
# Numbers of bootstrap samples
nboot=100
bootstrap.MedAESQ =rep(NA,nboot)
for(i in 1?:nboot)
{
fit <- rq( crp ~ bmi+glucose, tau = 0.5)
ypred=predict(fit)
y=new$crp
bootstrap.MedAESQ [i]=median(y-ypred)^2
lst[i]<-bootstrap.MedAESQ
}
mean(unlist(lst))
###################################
?
2011 Sep 23
1
Adding weights to optim
I realize this may be more of a math question. I have the following optim:
optim(c(0.0,1.0),logis.op,x=d1_all$SOA,y=as.numeric(md1[,i]))
which uses the following function:
logis.op <- function(p,x,y) {
ypred <- 1.0 / (1.0 + exp((p[1] - x) / p[2]));
res <- sum((y-ypred)^2)
return(res)
}
I would like to add weights to the optim. Do I have to alter the logis.op
function by adding an additional weights parameter? And if so, how would I
change the ypred formula? Would I just substitute x with...
2018 May 22
0
Bootstrap and average median squared error
On 5/22/2018 2:32 AM, Rui Barradas wrote:
> bootMedianSE <- function(data, indices){
> ???? d <- data[indices, ]
> ???? fit <- rq(crp ~ bmi + glucose, tau = 0.5, data = d)
> ???? ypred <- predict(fit)
> ???? y <- d$crp
> ???? median(y - ypred)^2
> }
since the OP is looking for the "median squared error", shouldn't the
final line of the function be
median((y - ypred)^2)
Dan
--
Daniel Nordlund
Port Townsend, WA USA
2018 May 22
0
Bootstrap and average median squared error
...o,
If you want to bootstrap a statistic, I suggest you use base package boot.
You would need the data in a data.frame, see how you could do it.
library(boot)
bootMedianSE <- function(data, indices){
d <- data[indices, ]
fit <- rq(crp ~ bmi + glucose, tau = 0.5, data = d)
ypred <- predict(fit)
y <- d$crp
median(y - ypred)^2
}
dat <- data.frame(crp, bmi, glucose)
nboot <- 100
medse <- boot(dat, bootMedianSE, R = nboot)
medse$t0
mean(medse$t) # This is the value you want
Hope this helps,
Rui Barradas
On 5/22/2018 12:19 AM, varin sacha vi...
2008 Nov 26
1
Smoothed 3D plots
...ion via 3D plots. My data and session
info are at the end of this message. So far, I have tried scatterplot3d
(scatterplot3d),
persp3d (rgl), persp (graphics) and scatter3d (Rmcdr) but any of them gave
me what I'd like to have as final result (please see [1] for a similar 3D
plot changing
PF by ypred, pdn by h4 and pup by h11).
In general terms, I would like to plot a smoothed surface with h4 and h11 in
the x and y axis, respectively, and y in the z axis. I think that a
smoothing procedure should
work but I don't know how to get that work in R.
I would really appreciate any help you can p...
2006 Apr 05
1
predict.smooth.spline.fit and Recall() (Was: Re: Return function from function and Recall())
...It is not related to the fact that
the function is returned from a function. Sorry about that. I've
been troubleshooting soo much I've been shoting over the target. Here
is a much smaller reproducible example:
x <- 1:10
y <- 1:10 + rnorm(length(x))
sp <- smooth.spline(x=x, y=y)
ypred <- predict(sp$fit, x)
# [1] 2.325181 2.756166 ...
ypred2 <- predict(sp$fit, c(0,x))
# Error in Recall(object, xrange) : couldn't find
# function "predict.smooth.spline.fit"
/Henrik
On 4/5/06, Henrik Bengtsson <hb at maths.lth.se> wrote:
> Hi,
>
> yesterday I...
2011 Jan 27
2
Extrapolating values from a glm fit
...t <-
c(1, 3, 2, 5, 4, 4, 3, 5, 5, 4, 5, 11, 22, 11, 15, 16, 11, 7,
14, 10, 16, 19, 11, 5, 4, 5, 6, 9, 4, 2, 5, 5, 2, 2)
mylogit <- glm(y~x,weights=weight, family = binomial)
# now I try plotting the predicted value, and it looks like a good fit,
hopefully I can access what the glm is doing
ypred <- predict(mylogit,newdata=as.data.frame(x),type="response")
plot(x, ypred,type="l")
points(x,y)
# so I try to predict the x value when y (proportion) is at .5, but
something is wrong..
predict(mylogit,newdata=as.data.frame(0.5))
[[alternative HTML version deleted]]
2012 Feb 25
1
Unexpected behavior in factor level ordering
...t"))
y <- rnorm(6)
m1 <- lm (y ~ xf )
plot(y ~ xf)
abline (m1)
## Just a little problem the line does not "go through" the box
## plot in the right spot because contrasts(xf) is 0,1 but
## the plot uses xf in 1,2.
xlevels <- levels(xf)
newdf <- data.frame(xf=xlevels)
ypred <- predict(m1, newdata=newdf)
##Watch now: the plot comes out "reversed", AC before BC
plot(ypred ~ newdf$xf)
## Ah. Now I see:
levels(newdf$xf)
## Why doesnt newdf$xf respect the ordering of the levels?
--
Paul E. Johnson
Professor, Political Science
1541 Lilac Lane, Room 504...
2018 Apr 21
0
Cross-validation : can't get the predicted response on the testing data
...ple size
sam=sample(1?:n,floor(p*n),replace=FALSE)
# Sample training data
Training =BIO [sam,]
# Sample testing data
Testing = BIO [-sam,]
?
# Build the 2 models
fit<- FastTau(model.matrix(~Training$A+Training$B),Training$C)
HBR<-hbrfit(C ~ A+B)
# Predict the response on the testing data
ypred=predict(fit,newdata=Testing)
ypred=predict(HBR,newdata=Testing)
# Get the true response from testing data
y=BIO[-sam,]$D
?# Get error rate
RMSE=sqrt(mean((y-ypred)^2))
RMSE
MAPE = mean(abs(y-ypred/y))
MAPE
2023 Oct 22
1
running crossvalidation many times MSE for Lasso regression
...ore the results
lst<-list()
?
# This statement does the repetitions (looping)
for(i in 1?:1000) {
?
n=45
?
p=0.667
?
sam=sample(1?:n,floor(p*n),replace=FALSE)
?
Training =T [sam,]
Testing = T [-sam,]
?
test1=matrix(c(Testing$x1,Testing$x2),ncol=2)
?
predictLasso=predict(cv_model, newx=test1)
?
?
ypred=predict(predictLasso,newdata=test1)
y=T[-sam,]$y
?
MSE = mean((y-ypred)^2)
MSE
lst[i]<-MSE
}
mean(unlist(lst))
##################################################################?
?
?
?
2023 Oct 22
2
running crossvalidation many times MSE for Lasso regression
...s (looping)
> for(i in 1 :1000) {
>
> n=45
>
> p=0.667
>
> sam=sample(1 :n,floor(p*n),replace=FALSE)
>
> Training =T [sam,]
> Testing = T [-sam,]
>
> test1=matrix(c(Testing$x1,Testing$x2),ncol=2)
>
> predictLasso=predict(cv_model, newx=test1)
>
>
> ypred=predict(predictLasso,newdata=test1)
> y=T[-sam,]$y
>
> MSE = mean((y-ypred)^2)
> MSE
> lst[i]<-MSE
> }
> mean(unlist(lst))
> ##################################################################
>
>
>
>
> ______________________________________________
> R-h...
2006 Aug 10
1
logistic discrimination: which chance performance??
Hello,
I am using logistic discriminant analysis to check whether a known
classification Yobs can be predicted by few continuous variables X.
What I do is to predict class probabilities with multinom() in nnet(),
obtaining a predicted classification Ypred and then compute the percentage
P(obs) of objects classified the same in Yobs and Ypred.
My problem now is to figure out whether P(obs) is significantly higher than
chance.
I opted for a crude permutation approach: compute P(perm) over 10000 random
permutations of Yobs (i.e., refit the multino...
2006 Apr 05
0
Return function from function and Recall()
...lem.
getPredictor <- function(x, y) {
sp <- smooth.spline(x=x, y=y, keep.data=FALSE)
function(x, ...) predict(sp$fit, x, ...)$y
}
# Simulate data
x <- 1:10
y <- 1:10 + rnorm(length(x))
# Estimate predictor function
fcn <- getPredictor(x,y)
# No extrapolation => no Recall()
ypred <- fcn(x)
print(ypred)
# Gives: # [1] 2.325181 2.756166 ...
# With extrapolation => Recall()
xextrap <- c(0,x)
ypred <- fcn(xextrap)
# Gives: # Error in Recall(object, xrange) : couldn't find
# function "predict.smooth.spline.fit"
To see what's the function look...
2023 Oct 24
1
running crossvalidation many times MSE for Lasso regression
...t;>
>> ? ? ? >> >> test1=matrix(c(Testing$x1,Testing$x2),ncol=2)
>> ? ? ? >> >>
>> ? ? ? >> >> predictLasso=predict(cv_model, newx=test1)
>> ? ? ? >> >>
>> ? ? ? >> >>
>> ? ? ? >> >> ypred=predict(predictLasso,newdata=test1)
>> ? ? ? >> >> y=T[-sam,]$y
>> ? ? ? >> >>
>> ? ? ? >> >> MSE = mean((y-ypred)^2)
>> ? ? ? >> >> MSE
>> ? ? ? >> >> lst[i]<-MSE
>> ? ? ? >> >> }
&...
2023 Oct 23
2
running crossvalidation many times MSE for Lasso regression
...ng = T [-sam,]
> >> >>
> >> >> test1=matrix(c(Testing$x1,Testing$x2),ncol=2)
> >> >>
> >> >> predictLasso=predict(cv_model, newx=test1)
> >> >>
> >> >>
> >> >> ypred=predict(predictLasso,newdata=test1)
> >> >> y=T[-sam,]$y
> >> >>
> >> >> MSE = mean((y-ypred)^2)
> >> >> MSE
> >> >> lst[i]<-MSE
> >> >> }
> >> >> mean(unli...
2023 Oct 23
1
running crossvalidation many times MSE for Lasso regression
...ng = T [-sam,]
>? ? ? >> >>
>? ? ? >> >> test1=matrix(c(Testing$x1,Testing$x2),ncol=2)
>? ? ? >> >>
>? ? ? >> >> predictLasso=predict(cv_model, newx=test1)
>? ? ? >> >>
>? ? ? >> >>
>? ? ? >> >> ypred=predict(predictLasso,newdata=test1)
>? ? ? >> >> y=T[-sam,]$y
>? ? ? >> >>
>? ? ? >> >> MSE = mean((y-ypred)^2)
>? ? ? >> >> MSE
>? ? ? >> >> lst[i]<-MSE
>? ? ? >> >> }
>? ? ? >> >> mean(unli...
2007 Oct 23
1
Compute R2 and Q2 in PLS with pls.pcr package
...ave-one-out cross
validation) of the model.
I am not sure if there are specific slots in the output of the mvr
function that give these parameters (RMS and R2 parameters are given for
each variable of Y). I have tried to compute it myself from the ouput of
mvr but I am not sure if the values of Ypred within the validat slot are
the predictions of each observation of Y when leave-one-out cross
validation is applied.
My code is as follows:
> mypls <- mvr(Xtrain, Ytrain, method="SIMPLS", validation="CV",
ncomp=1, niter=nrow(Ytrain))
> Xhat <- mypls$training$Xs...
2004 Nov 15
0
how to obtain predicted labels for test data using "kernelpls"
...predicted Y values for test data, using the
Kernel PLS method. Let's take the example in the R help:
> data(NIR)
> attach(NIR)
> NIR.kernelpls <- mvr(Xtrain, Ytrain, 1:6, validation = "CV",
method="kernelPLS")
How can we get the predicted Y values ("Ypred") for Xtest in this case?
As far as I checked, there is no parameter to specify the test data in
"mvr" or "pls". I, therefore, thought about the "kernelpls" function as
follows:
> Kernelpls(Xtrain, Ytrain, ncomp = 21, Xtest)
Is this the correct way of g...