varin sacha
2023-Oct-22 20:36 UTC
[R] running crossvalidation many times MSE for Lasso regression
Dear R-experts, Here below my R code with an error message. Can somebody help me to fix this error?? Really appreciate your help. Best, ############################################################ #?MSE CROSSVALIDATION Lasso regression? library(glmnet) ? x1=c(34,35,12,13,15,37,65,45,47,67,87,45,46,39,87,98,67,51,10,30,65,34,57,68,98,86,45,65,34,78,98,123,202,231,154,21,34,26,56,78,99,83,46,58,91) x2=c(1,3,2,4,5,6,7,3,8,9,10,11,12,1,3,4,2,3,4,5,4,6,8,7,9,4,3,6,7,9,8,4,7,6,1,3,2,5,6,8,7,1,1,2,9) y=c(2,6,5,4,6,7,8,10,11,2,3,1,3,5,4,6,5,3.4,5.6,-2.4,-5.4,5,3,6,5,-3,-5,3,2,-1,-8,5,8,6,9,4,5,-3,-7,-9,-9,8,7,1,2) T=data.frame(y,x1,x2) z=matrix(c(x1,x2), ncol=2) cv_model=glmnet(z,y,alpha=1) best_lambda=cv_model$lambda.min best_lambda ? ? # Create a list to store the results lst<-list() ? # This statement does the repetitions (looping) for(i in 1?:1000) { ? n=45 ? p=0.667 ? sam=sample(1?:n,floor(p*n),replace=FALSE) ? Training =T [sam,] Testing = T [-sam,] ? test1=matrix(c(Testing$x1,Testing$x2),ncol=2) ? predictLasso=predict(cv_model, newx=test1) ? ? ypred=predict(predictLasso,newdata=test1) y=T[-sam,]$y ? MSE = mean((y-ypred)^2) MSE lst[i]<-MSE } mean(unlist(lst)) ##################################################################? ? ? ?
Bert Gunter
2023-Oct-22 23:01 UTC
[R] running crossvalidation many times MSE for Lasso regression
No error message shown Please include the error message so that it is not necessary to rerun your code. This might enable someone to see the problem without running the code (e.g. downloading packages, etc.) -- Bert On Sun, Oct 22, 2023 at 1:36?PM varin sacha via R-help <r-help at r-project.org> wrote:> > Dear R-experts, > > Here below my R code with an error message. Can somebody help me to fix this error? > Really appreciate your help. > > Best, > > ############################################################ > # MSE CROSSVALIDATION Lasso regression > > library(glmnet) > > > x1=c(34,35,12,13,15,37,65,45,47,67,87,45,46,39,87,98,67,51,10,30,65,34,57,68,98,86,45,65,34,78,98,123,202,231,154,21,34,26,56,78,99,83,46,58,91) > x2=c(1,3,2,4,5,6,7,3,8,9,10,11,12,1,3,4,2,3,4,5,4,6,8,7,9,4,3,6,7,9,8,4,7,6,1,3,2,5,6,8,7,1,1,2,9) > y=c(2,6,5,4,6,7,8,10,11,2,3,1,3,5,4,6,5,3.4,5.6,-2.4,-5.4,5,3,6,5,-3,-5,3,2,-1,-8,5,8,6,9,4,5,-3,-7,-9,-9,8,7,1,2) > T=data.frame(y,x1,x2) > > z=matrix(c(x1,x2), ncol=2) > cv_model=glmnet(z,y,alpha=1) > best_lambda=cv_model$lambda.min > best_lambda > > > # Create a list to store the results > lst<-list() > > # This statement does the repetitions (looping) > for(i in 1 :1000) { > > n=45 > > p=0.667 > > sam=sample(1 :n,floor(p*n),replace=FALSE) > > Training =T [sam,] > Testing = T [-sam,] > > test1=matrix(c(Testing$x1,Testing$x2),ncol=2) > > predictLasso=predict(cv_model, newx=test1) > > > ypred=predict(predictLasso,newdata=test1) > y=T[-sam,]$y > > MSE = mean((y-ypred)^2) > MSE > lst[i]<-MSE > } > mean(unlist(lst)) > ################################################################## > > > > > ______________________________________________ > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code.
Reasonably Related Threads
- running crossvalidation many times MSE for Lasso regression
- running crossvalidation many times MSE for Lasso regression
- running crossvalidation many times MSE for Lasso regression
- running crossvalidation many times MSE for Lasso regression
- Bootstrap and average median squared error