search for: probits

Displaying 20 results from an estimated 260 matches for "probits".

Did you mean: progbits
2006 Jun 14
4
a new way to crash R? (PR#8981)
...redibly useful software! Now the bad news: The attached script (or the original version with real data) will reliably crash R on my machine. I am using: R version: either 2.2.1 or 2.3.1 Windows 2000 Professional, Service Pack 4 512 MB of RAM On my machine the script will crash R on line 42 [ probits21 <- lapply(... ]. In both this script and the "real" one, memory.size() indicates that R is about 512 MB just before executing the command that crashes it. In other contexts, R has been able to allocate virtual memory on this computer without any trouble. Thanks again for al...
2006 May 06
3
probit analysis
Dear all, I have a very simple set of data and I would like to analyze them with probit analysis. dose event trial 0.0 3 15 1.1 4 15 1.3 4 15 2.0 3 15 2.2 5 15 2.8 4 15 3.7 5 15 3.9 9 15 4.4 8 15 4.8 11 15 5.9 12 15 6.8 13 15 The dose should be transformed with log10(). I use glm(y ~ log10(dose), family=binomial(link=probit)) to do probit analysis, however, I have to exclude the
2003 Nov 06
1
for help about R--probit
Not real data. It was gererated randomly. The original codes are the following: par(mfrow=c(2,1)) n <- 500 ######################### #DATA GENERATING PROCESS# ######################### x1 <- rnorm(n,0,1) x2 <- rchisq(n,df=3,ncp=0)-3 sigma <- 1 u1 <- rnorm(n,0,sigma) ylatent1 <-x1+x2+u1 y1 <- (ylatent1 >=0) # create the binary indicator ####################### #THE
2006 Nov 19
1
problems with axis
hi list! i'm plotting a probit plot .On x axis i have value of a statistical variable. on y axis the corresponding normalized representation. I have this code plot(vals,perc,axes=F,col="red",pch=19,cex=0.25) probit.scale.values <- c(0,0.001,0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99,0.999,1) probit.scale.at <- qnorm(probit.scale.values)
2004 Jun 12
2
ordered probit or logit / recursive regression
> I make a study in health econometrics and have a categorical > dependent variable (take value 1-5). I would like to fit an ordered > probit or ordered logit but i didn't find a command or package who > make that. Does anyone know if it's exists ? R is very fancy. You won't get mundane things like ordered probit off the shelf. (I will be very happy if someone will show
2012 Mar 21
0
multivariate ordinal probit regression vglm()
Hello, all. I'm investigating the rate at which skeletal joint surfaces pass through a series of ordered stages (changes in morphology). Current statistical methods in this type of research use various logit or probit regression techniques (e.g., proportional odds logit/probit, forward/backward continuation ratio, or restricted/unrestricted cumulative probit). Data typically include the
2006 Nov 30
2
AIC for heckit
Hi, I have used the heckit function in micEcon. Now I would like to evaluate the fit of the probit part of the model but when I enter AIC(sk$probit) I get this error Error in logLik(object) : no applicable method for "logLik" How can I then get the AIC for this model? Side question: If you know - from the top of your head - some link to readings dealing with evaluating the
2001 Aug 31
2
Probit model
R users, I got a problem to analyze with probit model. What package contains the algorithm to do probit model. Lawrence N.M Kazembe Mathematical Sciences Department Chancellor College University of Malawi P.O. Box 280 Zomba Malawi Tel: (265) 524 222 ext 284 Fax: (265) 524 046 e-mail: lkazembe at chirunga.sdnp.org.mw url: kazembe.cjb.net kazembe.tsx.org
2004 Dec 03
3
multinomial probit
Hello All, I'm trying to run a multinomial probit on a dataset with 28 data points and five levels (0,1,2,3,4) in the latent choice involving response variable. I downloaded the latest mnp package to run the regression. It starts the calculation and then crashes the rpogram. I wish I could give the error message but it literally shuts down R without a warning. I'm using the R
2010 Feb 27
1
Help Computing Probit Marginal Effects
Hi, I am a stata user trying to transition to R. Typically I compute marginal effects plots for (example) probit models by drawing simulated betas by using the coefficient/standard error estimates after I run a probit model. I then use these simulated betas to compute first difference marginal effects. My question is, can I do this in R? Specifically, I was wondering if anyone knows how R
2011 Jan 28
2
help with S4 objects: trying to use a "link-glm" as a class in an object definition
Hi, I'm trying to make a new S4 object with a slot for a "link-glm" object. R doesn't like me have a slot of class "link-glm" > class(make.link("probit")) [1] "link-glm" > setClass("a",representation(item="link-glm")) [1] "a" Warning message: undefined slot classes in definition of "a": item(class
2003 Sep 08
1
Probit and optim in R
I have had some weird results using the optim() function. I wrote a probit likelihood and wanted to run it with optim() with simulated data. I did not include a gradient at first and found that optim() would not even iterate using BFGS and would only occasionally work using SANN. I programmed in the gradient and it iterates fine but the estimates it returns are wrong. The simulated data work
2012 Apr 04
0
multivariate ordered probit regression---use standard bivariate normal distribution?
Hello. I have yet to receive a response to my previous post, so I may have done a poor job asking the question. So, here is the general question: how can I run a run a multivariate (more than one non-independent, response variables) ordered probit regression model? I've had success doing this in the univariate case using the vglm() function in the VGAM package. For example:
2010 Dec 30
1
Different results in glm() probit model using vector vs. two-column matrix response
Hi - I am fitting a probit model using glm(), and the deviance and residual degrees of freedom are different depending on whether I use a binary response vector of length 80 or a two-column matrix response (10 rows) with the number of success and failures in each column. I would think that these would be just two different ways of specifying the same model, but this does not appear to be the case.
2012 Feb 01
3
Probit regression with limited parameter space
Dear R helpers, I need to estimate a probit model with box constraints placed on several of the model parameters. I have the following two questions: 1) How are the standard errors calclulated in glm (family=binomial(link="probit")? I ran a typical probit model using the glm probit link and the nlminb function with my own coding of the loglikehood, separately. As nlminb does not
2009 Aug 31
1
Probit function
Hello, I want to start testing using the MNP probit function in stead of the lrm function in my current experiment. I have one dependant label and two independent varaibles. The lrm is simple model <- lrm(label ~ val1 + val2) I tried the same thing with the mnp function and got an error that I don't understand model <- mnp(label ~ val1 + val2) I get back an immediate error that
2010 Jul 20
1
question about sign of probit estimates
Hello, I am getting some results from my Probit estimation in R that are in the opposite direction of what I hypothesized. In sas, the default is probability that y=0 (instead of 1) so one needs to type the word "descending" to get P(y=1). Is the same true for R? Is the default set to P(0)? Thank you in advance. Nita Umashankar [[alternative HTML version deleted]]
2009 May 08
2
Probit cluster-robust standard errors
If I wanted to fit a logit model and account for clustering of observations, I would do something like: library(Design) f <- lrm(Y1 ~ X1 + X2, x=TRUE, y=TRUE, data=d) g <- robcov(f, d$st.year) What would I do if I wanted to do the same thing with a probit model? ?robcov says the input model must come from the Design package, but the Design package appears not to do probit? Thanks very
2005 Oct 12
2
linear mixed effect model with ordered logit/probit link?
Hello, I'm working on the multiple categorical data (5-points scale) using linear mixed effect model and wondering if anyone knows about or works on the linear mixed effect model with ordered logit or probit link. I found that the "lmer" function in R is very flexible and supports various models, but not ordered logit/probit models. I may conduct my analysis by turning my DVs
2010 Oct 31
1
Questions about Probit Analysis
Dear All, I have some questions about probit regressions. I saw a nice introduction at http://bit.ly/bU9xL5 and I mainly have two questions. (1) The first is almost about data manipulation. Consider the following snippet ################################################## mydata <- read.csv(url("http://www.ats.ucla.edu/stat/r/dae/binary.csv")) names(mydata) <-