I need to learn how to apply the methods in robCompositions and have read the package docs. Two of my six data sets of proportions contain missing values (not collected or not present); one set has a single missing value, the other has 3 missing values. So my first task is to learn how to properly apply the impCoda() method to my data to impute values for those that are missing. After reading ?impData and emulating the syntax on that help page, without understanding how to select appropriate options for the various components, I end up with errors and have no clue how to correctly format the command. The data frame: burns.co Filterer Gatherer Grazer Predator Shredder date2000-07-18 0.0550 0.5596 0.0734 0.2294 0.0826 date2003-07-08 0.0734 0.6147 0.0183 0.2294 0.0642 date2005-07-13 0.1161 0.5714 0.0357 0.1696 0.1071 date2006-06-28 0.1000 0.4667 0.1500 0.1333 0.1500 date2010-09-14 0.0778 0.6111 0.0444 0.1889 0.0778 date2011-07-13 0.0879 0.5714 0.0659 0.2747 NA date2012-07-11 0.1042 0.5313 0.0625 0.2396 0.0625 date2013-07-11 0.0723 0.5542 0.0602 0.2651 0.0482 has this structure: str(burns.co) 'data.frame': 8 obs. of 5 variables: $ Filterer: num 0.055 0.0734 0.1161 0.1 0.0778 ... $ Gatherer: num 0.56 0.615 0.571 0.467 0.611 ... $ Grazer : num 0.0734 0.0183 0.0357 0.15 0.0444 0.0659 0.0625 0.0602 $ Predator: num 0.229 0.229 0.17 0.133 0.189 ... $ Shredder: num 0.0826 0.0642 0.1071 0.15 0.0778 ... Emulating the syntax in ?impCoda produces this result: burnsImp <- impCoda(burns.co, maxit = 10, eps = 0.5, method = 'ltsReg', closed = TRUE, init = 'KNN', k = 5, noise = 0.1, bruteforce = FALSE) Error in ltsReg.default(x, y, intercept = (xint > 0), ...) : Need more than twice as many observations as variables. In addition: Warning message: In impCoda(burns.co, maxit = 10, eps = 0.5, method = "ltsReg", closed TRUE, : k might be too large Please provide pointers so I can read and learn how to correctly specify impCoda parameters for my data sets. TIA, Rich