I am trying to call a C++ k-means function within R and I am struggling. I know that the below code is used to call a C++ function for gbm but how do I do it for k-means? gbm.obj <- .Call("gbm", Y=as.double(y), Offset=as.double(offset), X=as.double(x), X.order=as.integer(x.order), weights=as.double(w), Misc=as.double(Misc), cRows=as.integer(cRows), cCols=as.integer(cCols), var.type=as.integer(var.type), var.monotone=as.integer(var.monotone), distribution=as.character(distribution.call.name), n.trees=as.integer(n.trees), interaction.depth=as.integer(interaction.depth), n.minobsinnode=as.integer(n.minobsinnode), n.classes = as.integer(nClass), shrinkage=as.double(shrinkage), bag.fraction=as.double(bag.fraction), nTrain=as.integer(nTrain), fit.old=as.double(NA), n.cat.splits.old=as.integer(0), n.trees.old=as.integer(0), verbose=as.integer(verbose), PACKAGE = "gbm") names(gbm.obj) <- c("initF","fit","train.error","valid.error", "oobag.improve","trees","c.splits") gbm.obj$bag.fraction <- bag.fraction gbm.obj$distribution <- distribution gbm.obj$interaction.depth <- interaction.depth gbm.obj$n.minobsinnode <- n.minobsinnode gbm.obj$num.classes <- nClass gbm.obj$n.trees <- length(gbm.obj$trees) / nClass gbm.obj$nTrain <- nTrain gbm.obj$train.fraction <- train.fraction gbm.obj$response.name <- response.name gbm.obj$shrinkage <- shrinkage gbm.obj$var.levels <- var.levels gbm.obj$var.monotone <- var.monotone gbm.obj$var.names <- var.names gbm.obj$var.type <- var.type gbm.obj$verbose <- verbose gbm.obj$Terms <- NULL -- View this message in context: http://r.789695.n4.nabble.com/How-do-I-call-a-C-function-for-k-means-within-R-tp4693393.html Sent from the R help mailing list archive at Nabble.com.