Dear all, I am trying to use the nonlinear quantile regression which involves copula functions. Following the Frank copula example provided in the "quantreg" vignette I try do do the same using the Normal (Gaussian) copula. The problem is that the "nlrq" algorithm stops by giving the following error: "Error in numericDeriv(form[[3]], names(ind), env) : Missing value or an infinity produced when evaluating the model In addition: Warning message: In sqrt(1 - rho^2) : NaNs produced Error in nlrq.calc(m, ctrl, trace) : optim unable to find valid step size" I have to say that rarely (e.g. 1% of the times) the code below works, but gives me really wrong estimations for some quantiles. I suspect the convergence problem is related to the correlation parameter "rho". Is there any way I can put "lower" and "upper" parameter bounds in "nlrq" e.g. like in "nls"? Well..., by looking the ?nlrq it seems this is not possible, but I hope I am wrong :). Some example code: library(quantreg) n <- 1000 # sample size df <- 3 # degrees of freedom for the marginal distribution rho <- 0.5 # Normal copula parameter u <- runif(n) x <- sort(rt(n,df)) v <- pnorm(rho*qnorm(pt(x,df))+sqrt(1-rho^2)*qnorm(u)) y <- qnorm(v) # below I assume I know Fx is t-distributed with known df. plot(x, y, pch = ".", cex = 3,xlim=c(-4,4),ylim=c(-4,4),main="Normal copula pth quantile curves") us <- seq(0.1,0.9,0.1) for (i in 1:length(us)) { vq <- pnorm(rho*qnorm(pt(x,df))+sqrt(1-rho^2)*qnorm(us[i])) lines(x, qt(vq,df),lty=ltys[i],lwd=3,col="blue") } Dat <- NULL Dat$x <- x Dat$y <- y deltasN <- matrix(0, length(us),3) # here is my non-linear quantile model NormalModel <- function(x,rho, mu,sigma,df,tau){ z <- qt(pnorm(rho*qnorm(pt(x,df))+sqrt(1-rho^2)*qnorm(tau)),df) mu + sigma * z } for (i in 1:length(us)) { tau = us[i] fit <- nlrq(y ~ NormalModel(x,rho, mu,sigma,df=3,tau = tau), data = Dat, tau = tau, start = list(rho =0.5,mu = 0, sigma = 1), trace = TRUE) lines(x, predict(fit, newdata = x), lty = 2,col = "red") deltasN[i, ] <- coef(fit) } deltasN I am running R(3.03) on Mac OS 10.9 and quantreg(5.05) Thank you! Francesco [[alternative HTML version deleted]]